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Human adults have rich theories in their heads of how the world works. These

theories include objects and relations for both concrete and abstract concepts. Every-

thing we know either must be innate or learned through experience. Yet it’s unclear

how much of this model needs to be innate for a computer. The core question this

dissertation addresses is how a computer can develop rich relational theories using

only its raw sensor data. We address this by outlining a “bridge” between raw sensors

and a rich relational theory. We have implemented parts of this bridge, with other

parts as feasibility studies, while others remain conceptual.

At the core of this bridge is Ontol, a system that constructs a conceptual struc-

ture or “ontology” from feature-set data. Ontol is inspired by cortical models that

have been shown to be able to express invariant concepts, such as images indepen-

dent of any translation or rotation. As a demonstration of the utility of the ontologies

created by Ontol, we present a novel semi-supervised learning algorithm that learns

from only a handful of positive examples. Like humans, this algorithm doesn’t re-

quire negative examples. Instead, this algorithm uses the ontologies created by Ontol

from unlabeled data, and searches for a Bayes-optimal theory given this “background

knowledge”.



The rest of the dissertation shows in principle how Ontol can be used as the

“workhorse” for a system that finds analogies, discovers useful mappings, and might

ultimately create theories, such as a “gisty” theory of “number”.
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Chapter 1

PROBLEM STATEMENT, RELATED WORK,

AND CONTRIBUTIONS

From the child of five to myself is but a step. But from the new-born

baby to the child of five is an appalling distance.

–Leo Tolstoy (1828-1910)

Much of how we describe our world incorporates relations among abstract con-

cepts. For example, we understand news stories about the “trade balance” between

“China” and “The United States”, we understand the meaning of the sentence “Fear

is the destroyer of dreams.”, and we understand that “NP-complete problems don’t

necessarily require an exponential amount of memory to solve”. Somehow, we have

theories of the world that are rich enough to understand all these concepts. Likewise,

for a computer to be considered intelligent, it also must have theories that are rich

enough to represent and understand such concepts. Anything that a computer knows

must either be hand-coded by a human or must be learned through its experience

in the world. Efforts have been made at hand-coding this kind of knowledge with

1
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limited success (Witbrock et al. 2005), (Lenat & Guha 1990), but it seems clear that

anything approaching human-like requires a high degree of learning, as it’s unlikely

that anything about China or NP-completeness is encoded in our DNA.

Traditional approaches to Artificial Intelligence focus on selecting an application

and then constructing representations for that domain by hand. These approaches

are problematic in that they require much labor intensive knowledge engineering.

Furthermore, these systems tend to be brittle, often failing when they encounter

unanticipated situations. A newer approach to AI is to have a computer develop its

representations autonomously. In this alternate approach the computer is provided a

minimal amount of knowledge (implicit or otherwise) about the world and is expected

to learn and develop a conceptual structure from large amounts of raw sensor data

over a long period of time. In this approach, the computer is viewed as a “robot baby”

(Cohen et al. 2002) because, like human infants, it comes into the world knowing very

little and must learn much of what it knows from its environment. The robot baby

approach is attractive because it requires little knowledge engineering and is robust

because the computer learns to adapt to unanticipated situations. This approach also

directly addresses the Symbol Grounding Problem (Harnad 1990) —the problem of

creating meaning using only a set of meaningless symbols— by directly grounding all

a computer’s knowledge in sensory data.

The “knowledge-free” property of the robot baby approach has several advan-

tages. It keeps the system general, and it makes it easy for us to feed data about the

system back into the system (for metacognition). Furthermore, with the decreasing

price and increasing ubiquity of sensors, there are modalities where domain-knowledge

is non-existent or difficult to get, such as the traffic data in Figure 1.1. All these sen-
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sors provide potentially useful data that go unused for lack of knowledge of how to

use it. Keeping our algorithm knowledge-free also simplifies the model in that we

have only a handful of representational mechanisms, instead of a different mechanism

for each domain. We hypothesize that an algorithm that can go from raw sensors to

a perceptual system can also go from a perceptual system to higher-level concepts.

Under our approach a computer is explicitly told very little about the world,

but, if it’s to be intelligent, it somehow must be able to understand abstract concepts

like the examples mentioned above. Thus, we have the central question that this

dissertation seeks to answer: How can a computer develop rich relational theories

using only its raw sensor data?

The robot baby approach faces several challenges. For any specific domain,

a human-engineered approach usually outperforms an autonomously developed ap-

proach. But we’re interested in a general intelligence. It’s doubtful that a system

engineered to play chess will also do well at a voice recognition task. If we’re ever

going to achieve human-level machine intelligence, we need to have a general-purpose

learning machine. Beyond a certain level of complexity, any autonomously-generated

representation will be difficult for humans to interpret. For example, the weights

learned by feed-forward neural networks are often difficult to interpret (Garson 1991).

For this reason, it’s difficult to directly provide domain-knowledge from human ex-

perts. We must remember that this is a limitation suffered by human babies also.

This property may be inherent for any sufficiently complex representation in general,

whether autonomously acquired or knowledge-engineered. Therefore, we propose to

make our representation-acquisition algorithms as simple as possible, so we can more

easily be sure of their validity and the validity of the representations they develop.
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Fig. 1.1. Traffic speed sensor data. The top image is a map of automobile traffic
speed sensor locations. Below, is a time series of the traffic values taken every 5
minutes for a week. The y axis are the 87 sensors in an arbitrary order. The x axis
is time. Black areas are where the average traffic speed over the 5 minute window is
less than 25 miles per hour. Grey areas are missing data. We can see the morning
and evening rush hours as dark evenly spaced bands.
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This is an argument for a knowledge-free approach. This keeps the system simple. A

general rule-of-thumb for designing learning systems may be summarized as “an ounce

of (human-provided) heuristic is worth a pound of search”. If we allow knowledge-

engineering at any level, we won’t be sure if the success of the algorithm is due to the

knowledge-engineering or due to the system’s own representation-acquisition. Thus,

a core challenge we face is resisting the temptation to engineer a domain-specific sys-

tem, which we address by forcing our algorithm to work on a wide range of domains,

especially domains about which we have little domain knowledge. Another disadvan-

tage of the robot baby approach is the large amount of data needed for the system to

build its own representation. However, this is becoming less of a problem as sensors

are becoming cheaper and the sheer amount of data being generated by these sensors

increases. Furthermore, data needed by the robot baby doesn’t need to be labeled and

requires a minimal amount of massaging, making it inexpensive to acquire. The robot

baby approach also requires a learning period —possibly years— before it becomes

an expert about a domain. This also may be an inherent property of learning about

complex domains. There’s a trade-off between plasticity and innateness. Humans are

able to learn to play abstract games, like Chess or Go, which didn’t exist for most

of our evolution. But human babies also require several years of experience to get

to this point. In contrast, antelope are born knowing how to run, but it’s doubtful

an antelope will ever become a Chess expert, no matter how many years of Chess

experience they’re given.

In building a robot baby, we must address The Squiggly Lines Problem: The

robot doesn’t know what its sensors mean, it just has the sensor readings over time,

which, when plotted, look like a bunch of squiggly lines, as shown in Figure 1.2. For

example, consider a Pioneer robot with sonar sensors. Suppose we’re given only plots
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Fig. 1.2. Squiggly Lines. This shows data over time for 3 sensors.

of these sensors’ readings, but no other information. We’re not told which sensor is

which. We don’t even know that these are sonar sensors from a mobile robot. As

far as we would know, these could even be readings from (a simulation of) a mobile

robot in a 5 Dimensional world. If the Pioneer moves past a trash can, the base

sonar readings would be qualitatively different depending on whether the trash can

is upright or knocked on its side. The Squiggly Lines Problem is going from these

squiggly lines to a theory of the world that, if applied to the Pioneer’s data, would

include 3D objects (and maybe a simple theory of 3D physics).

The theories that people hold about the world are qualitatively different from

those held by traditional knowledge-engineered systems. For example, people have

“gists” for integers higher than about 10. We know that 56 is close to 57, but for most

of us a pile of 57 marbles is nearly indistinguishable from a pile of 56 marbles. We

have a loose mapping between a pint-sized jar of marbles and the number representing
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the quantity of marbles in it: we know that it’s more that 20 marbles, but less than a

billion. We know that 50 degrees Fahrenheit is too chilly for jeans and a t-shirt, but

too warm to wear an arctic snow-suit. When we simulate 56 marbles rolling across

the floor in our minds, we might simulate a single entity called “a bunch (not even a

definite number) of marbles”. Our “gisty” or intuitive theory of numbers is different

from that of number theory or a computer’s representation of numbers. A question

this dissertation helps to answer is: How can a computer develop gisty theories, such

as a gisty theory of integers?

The initial idea for this work was sparked by a “morphable face model” that

recognizes human faces by using a 3D model of them (Blanz 2006). The computer

was provided with a basic model of rotation, lighting, and 3D shapes. The morphable

face model was an engineering endeavor, so there was no shame in hand-holding, and

this system had plenty of it. This gave rise to the following question: How could

a computer ever develop on its own a “theory” of 3D faces, like that used in the

morphable face model, given only 2D images? That is, in principle, how can we build

a bridge spanning the vast gap from raw sensor data to rich domain theories, such

as the basic 3D physics model in (Blanz 2006), without knowledge engineering? We

suspect that the mechanisms introduced in this dissertation are sufficient for this.

In this dissertation, we provide an outline to the answer for this question, with

various parts implemented and tested. We provide the basic design for this bridge,

and have constructed various segments. A full implementation of this bridge may take

decades of work, so some parts of our bridge are steel and concrete, some places are

wooden sticks, and some places are only conceptual. The point of this dissertation is

to provide a framework, with implementations to show the feasibility of this approach.
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Fig. 1.3. “The bridge”. The core parts of Phase 1 are implemented. Parts of
Phases 2 and 3 are implemented, while Phases 4 and 5 are conceptual.

Our design is shown in Figure 1.3. The bridge consists of 5 phases. Phase 1, the major

technical contribution of this dissertation, is for our system to learn a conceptual

structure, called an “ontology”. We call this ontology-builder “Ontol”. The remaining

phases are only partially implemented, as a full implementation is beyond the scope

of this dissertation. Phase 2 introduces relational concepts by finding parts of the

ontology that are analogous, then inducing parameterized schemas from the overlap of

these parts. Phase 3 discovers mappings using the concepts discovered from Phase 2.

Phase 4 finds overlap among systems of mappings to create parameters for mappings.

Phase 5 represents relational structures in a manner such that these can be fed back

into Ontol, effectively doing a version of metacognition.



9

1.1 Assumptions

This dissertation is based on the following assumptions:

I. Hand coding representations is a doomed approach to AI (or at least it’s not the

best way to go about AI).

The traditional approach to AI is where a person will pick an application, then

construct representations for that domain. The problem with this is that it

takes a good deal of knowledge engineering (which is labor intensive), and the

system will fail if something happens that the person didn’t anticipate.

An alternate approach is to have the computer develop its representations au-

tonomously, and this is what we’re proposing to do in this dissertation. There-

fore, a driving force in developing our algorithms is domain independence. To

guard against tailoring our algorithms to any single domain, we have a suite of

disparate domains.

The breadth of these domains is used to illustrate the generality and knowledge-

free property of the algorithms. Each domain is represented in feature-set form,

but beyond that, we make no modification of either the domain or our algo-

rithms.

II. We’re not allowing the learner to take actions to affect the world. That is, our

system will be a passive observer. Our system has neither actions, goals, or

temporal information. This is for simplicity because we believe it’s possible

to learn models without these. Our system should be able to leverage these if

they’re available, but the simplest case would be the system just as an observer.

Our view is that allowing an agent to take actions confounds the problem of
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making a robot baby. People can learn a good deal just by observation. For

example, the fields of geophysics and astrophysics are largely observational.

Just because we can’t perform experiments on stars doesn’t mean that we can’t

build a theory about how they work, even a causal theory.

If we allow the agent to take actions, then we would have to address how the

agent plans and performs experiments, and for now we’d like to focus on the

learner/reasoner under the assumption that there’s a clean way to add in actions

later. Once we have a working theory-maker, then we assume that we can just

add the actions as extra signals, and the system will build a theory of how

actions affect the world. It can then use this theory to take meaningful actions.

Although statisticians have shown that you can’t be 100% sure of causality

without causal experiments, Pearl (Pearl 2000) points out that one can be

pretty sure about a causal theory given non-causal data. Essentially, the most

parsimonious causal theory that explains the data is probably the correct one.

There is also evidence that 4-month-olds have causal concepts that 3-month-olds

don’t have, despite their limited abilities to affect the world (Leslie & Keeble

1987), so the necessity of actions to develop a world model (for example in

Drescher’s model (Drescher 1991)) is questionable.

Also, if our system can’t take actions, and the data is unlabeled, we’re left with

an unsupervised learning problem, and the question arises as to what will be

used to drive learning. This leads to the next Assumption.

III. A shorter theory is a better theory. This assumption gives us a goal to go for:

the shortest theory that explains the data. This is the driving force in our

algorithm, which essentially does compression.

We later question this assumption in Subsection 8.2.1. Essentially, there’s a
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trade-off of time and memory. For example, given a few inference rules and

Euclid’s 5 postulates, we can derive all of Euclidean geometry. However, in

practice, we’ll probably want to cache some of the lemmas etc.. We could

combine time and memory into a single measure for how good a theory is (e.g.

“50 time units equals 1 memory unit”), but there may be a more elegant way

to address this issue.

IV. Optimality is unnecessary for intelligence. People make mistakes, and our com-

puters should be allowed to too. Many of the problems we’re working on are

NP-hard or worse, but we mustn’t fall victim to what Seymour Papert calls

the “Superhuman Human Fallacy”, which is the belief that people can perfectly

solve NP-hard problems quickly.

Ultimately, we want our runtimes to be O (n log n) or better where n is the size

of the data. O (mn log (n)) algorithms should be allowed if these algorithms

are parallelizable among m “processors”. Here we consider each region of our

ontology (which we refer to as a cortical region, following (Hawkins & Blakeslee

2004)) as its own processor, where “region” and “processor” are both loosely

defined.

V. For domains we’re interested in, we have access to a large amount of data.

We want our computer’s knowledge to come from ample domain data, not

from human experts. Over the first few years of life, humans are exposed to a

tremendous amount of sensory inputs. Likewise, we assume that large amounts

of data are cheap to acquire for our computer. Since our algorithm is knowledge-

free, we don’t have to label anything. Furthermore, our algorithms are based

on a prediction framework that allows us to “predict” missing data.
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VI. It’s possible for a system to develop a full model of the world even if it starts

with very little innate knowledge. It’s clear that animals and possibly humans

are born with a good deal of innate knowledge. For example, antelopes are

born knowing how to run and avoid predators. Here the innate knowledge

has been provided by millions of years of evolution. But we’re trying to build

smart robots, and we don’t have millions of years of evolution to put in them

innately. The innate knowledge is helpful and evolutionarily necessary, as it

reduces the amount of time to bootstrap learning, but it may not be necessary

for intelligence.

Thus, we seek to find the minimal amount of innate knowledge necessary for

bootstrapping intelligence. This might be quite small. Using Assumption III

we can conceptually solve the Squiggly Lines Problem (but with an exponen-

tial time solution) in a manner similar to that of Hutter’s Universal Artificial

Intelligence:

(a) Give the robot a representation framework that’s expressive enough to

encode physical objects, causality, 3D physics, etc..

(b) Give the robot a lot of data from its sensors, say a few years’ worth of

sensor readings.

(c) Generate all the theories that are of a complexity less than that of the raw

data, and choose the smallest that can be “flattened” to produce the raw

data.

We hypothesize that (given enough data, and an expressive enough representa-

tion framework) this will find a causal theory that includes naive physics.

Ultimately, the goal of the robot baby approach to Artificial Intelligence is to
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bring the computer from the level of a newborn to that of a 3-year-old human,

which means the computer would have a “gisty” theory of physics, natural

language understanding, and other basic concepts. Once the computer acquires

language understanding, it can use this to tap into humanity’s vast store of

cultural knowledge (both tacit and explicit). We hypothesize that if we develop

a theory that’s sufficient to bring a robot baby from the intelligence level a of

newborn to that of a 3-year-old human, then this theory will also be sufficient

for taking the robot from the level of 3-year-old human to that of an adult

human.

1.2 Evaluation Criteria

A complete, implemented answer to our question —“How can a computer develop

rich relational theories using only its raw sensor data?”— is beyond the scope of a

single dissertation, but it’s our aim to make progress in answering this question.

Therefore, we present the following list of desiderata to help evaluate prospective

answers to this question. We split these desiderata into those for our theory of

learning, and those for the theory that our system learns from its sensor data. That

is, we want to know how good an ontology or theory is.

The goal of this work is not to build the entire bridge (from raw sensor data all

the way to a relational theory), but to give a plausible story and to implement and

test certain pieces. Both the story and the implemented pieces need criteria by which

to be evaluated.
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1.2.1 Desiderata for our theory of learning

Here we list desired properties for a theory describing an intelligent system.

Earlier works discussing desiderata of intelligent agents ((Sun 2004), (Rosenbloom,

Laird, & Newell 1993), (Newell & Simon 1972)) tend to focus on planning and problem

solving using a human-provided domain model, and containing autonomous learning

and development of representations as an afterthought, if at all. We claim that a

stronger emphasis should be placed on ground-level learning.

Since we provide a minimal amount of domain knowledge, domain indepen-

dence and generality should be among the top criteria for a learning and

reasoning computer. Therefore, an empirical demonstration of such a computer

should contain several disparate (though data-rich) domains with a minimal amount

of human-provided data “massaging”. A set of domains might contain robot sonar

sensor data, a large corpus of text, a series of images, and a simulation of Conway’s

Game of Life. For each of these, a computer should, at a minimum, autonomously

develop an ontology that’s useful for characterizing that domain. For example, when

given sonar data, the computer may build a hierarchy of motifs. When given images,

the computer should develop edge filters, and when given Conway’s Game of Life, the

computer should develop the concept of a “glider”. Ultimately, we’d like to have a

computer that will build the theory appropriate for whatever data it’s presented with.

Given ample image data, the computer should eventually discover physical objects

and concepts such as translation, rotation, and scaling. Beyond that, a computer

should eventually develop the concept of “degree of rotation”, a “gisty” theory of

numbers or an intuitive theory of quantity, and it should understand that the degree

of rotation is similar to the number of apples in a group in that both are a matter
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Fig. 1.4. A spectrogram of the spoken sentence “The world is my idea.”.
The x axis is time, and the y axis is frequency.

of degree. The computer should be general enough such that the same computer can

develop the relevant concepts for other types of data. For example, if the computer

is given enough English speech data, like in the example in Figure 1.4, the computer

should discover phonemes, English words, and transformations such as pitch changes,

speed shifts, loudness, and different accents, such as “British” and “American” ac-

cents. Similarly, we’d like the same computer to discover Chinese words and Chinese

phonemes when given ample spoken Chinese data. Such feats are beyond the scope

of a dissertation, but we would like to at least have a conceptual story for how they

might be accomplished.

Our story should be as simple as possible. This is useful not only because
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we want our theory to be scientifically valid according to the principle of Ockham’s

razor, but also because we’d eventually like to implement the entire system. If a

premium is placed on model elegance, building the system will be made easier. In

addition, in a real-world situation, such a system will be provided with gigabytes of

data and will create a theory with millions of concepts. This amount of data will

make such a system particularly tricky to understand and debug, which also places a

premium on keeping the system as simple as possible.

In keeping with simplicity, we’re looking for a general algorithm with a handful

of mechanisms as opposed to a large collection of specialized subsystems. In par-

ticular, it will be useful to have mechanisms that work “all the way up”. That

is, the same mechanism that builds low-level concepts from raw sensor data should

be able to build mid-level concepts from low-level concepts. This works well with our

goal of making the story domain-general: if our system generates low-level concepts

from generic sensor data, then we can treat the low-level concepts as sensor data from

which to create higher level concepts and so on.

Since we ultimately want to implement and run a working system, our story

needs to be implementable, and it needs to require reasonable computational

resources. A story that required super-polynomial time or memory would therefore

be unacceptable.

We’re interested in how a computer can develop a relational theory from sensor

data. It’s conceivable that the story might be quite different from how people learn.

That being said, if our theory is biologically or psychologically plausible, such

a story might lend insight on human intelligence. Furthermore, since our only ex-

isting example of intelligence is biological, it would add strength to our story if it
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corresponded to psychological or neurological models of representation and learning,

though this correspondence isn’t a requirement.

The desiderata for our theory of learning are summarized here:

1. The theory should be as simple as possible.

2. The theory should focus on having as little innate knowledge as possible.

3. The system needs to be implementable and require reasonable computational

resources.

4. The theory should be testable across a wide range of domains with no changes

to the algorithms.

5. Though not necessary, the theory will be strengthened by biological and psy-

chological plausibility.

6. The theory needs to offer a plausible story for how the gap is bridged from raw

sensor data all the way to a relational theory of the world.

1.2.2 Desiderata for the theory learned by the system

To answer the question more precisely of exactly what an intelligent computer

should do with its data is perhaps tantamount to answering the question of what

intelligence is. It has been suggested that a core purpose of intelligence is to con-

cisely characterize a set of data (Wolff 2003), (Hutter 2004). That is, given data, an

intelligent computer should generate a model that best compresses the data. This is

the principle of Minimum Description Length (MDL). It is fundamentally equivalent



18

to Ockham’s Razor, which says, in effect, that “The shortest model (that predicts

the data) is the best model.”. If we assume that the prior probability of a model is

inversely proportional to the exponent of its description length, then Ockham’s Razor

is also fundamentally equivalent to the Bayesian principle that states that “The most

probable model is the best model.”. In Subsection 8.2.1, we question the use of this

metric, but it’s straightforward to evaluate, and is a good rule-of-thumb for creating

concepts that correspond to what people might discover.

We hypothesize that many concepts that people have are objectively useful be-

cause they allow us to characterize the world. For example, the class of mammal isn’t

just a human invention, but is objectively useful for characterizing animals. If an

alien visitor observed our planet, we hypothesize that given enough experience, the

alien would independently distinguish between mammals, fish, and reptiles. To be

sure, there are plenty of concepts that are task dependent. For example, an army gen-

eral might look at a mountain range as a defensive barrier while a mountain climber

might look at the same range as a series of peaks to be climbed. But we hypothe-

size that there are a core set of concepts that are useful for a wide variety of tasks.

Intuitively, this makes sense because a human needs only a handful of examples to

learn a concept such as what an army tank is, whereas most supervised learning tech-

niques require hundreds if not thousands of examples. Even if shown hundreds of

photographs, labeled “with” and “without” tanks, a computer is as likely to conclude

that the concept of “tank” corresponds to a cloudy day as it is to come up with the

actual concept of “tank” if the “with” pictures were taken on a cloudy day and the

“without” were taken on a sunny day. A human probably wouldn’t make this mistake.

We suspect that humans do this by leveraging their previous knowledge that’s been

gained through their experience in the world. Among other things, this dissertation
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demonstrates this principle by showing that an ontology built through unsupervised

learning can be used to greatly improve performance on supervised learning tasks.

That is, we can use our ontology to learn concepts from a tiny number of labeled

exemplars. Note that we’re not getting anything for free: we still have to train the

computer using a large number of unlabeled exemplars.

For simple domains and test cases, we can simply look at the theory developed

and see if it corresponds to human-provided concepts. For example, on a simple ani-

mal dataset, we can look at the developed ontology and see if the concepts correspond

to mammals, reptiles, etc.. Simply looking at the ontology becomes more difficult for

more complex domains because the ontology won’t be so easily interpretable if it’s

formed on vision data, for example. For such cases, we can still evaluate the learned

concepts by seeing if these concepts allow us to improve performance on supervised

learning tasks, as mentioned above.

But there are some datasets for which acquiring human-provided knowledge be-

comes difficult. For example, datasets with which few people have firsthand expe-

rience and intuitions about, such as the time series of automobile traffic highway

speed sensor data shown in Figure 1.1. Our hypothesis is that if, when run on do-

mains about which humans have knowledge, the concepts developed by our system

are sensible, then the concepts developed by our system on other domains will also

be sensible.

Furthermore, in accordance with (Hawkins & Blakeslee 2004), our system should

be able to use its theory to make accurate predictions about missing data, for example.

Since our system is only an observer, we don’t have actions or reward, so we can’t
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use reward as an evaluation metric. But as for supervised learning, the developed

theory should be useful for goal-driven tasks, such as reinforcement learning.

In summary, we have the following desiderata for the theory learned by the

computer:

1. The theory should allow for compression of the data.

2. Generally, the theory should create concepts that correspond to human-developed

concepts. This includes being able to leverage the theory to improve perfor-

mance on supervised learning tasks with human-provided labels.

3. Our system should be able to use the theory it develops to make accurate

predictions about missing data.

This is an overview of evaluation. In general, we’ll use compression as the eval-

uation metric for each part, but will mention how the specifics are spelled out for in

each chapter for that part.

1.3 Related Work

Below is an overview of related work for the whole story for going from raw

sensor data to a rich relational model of that data. Detailed related work for each

chapter will be separate.

There has been relatively little work on creating relational concepts from feature-

set data. The work of (Pierce & Kuipers 1997) and (Kuipers 2008) begins with raw
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undifferentiated sensors from a mobile robot, and builds a “rickety bridge” from

these sensor readings to a map of the physical world. This work presents a sequence

of methods for building each step of this bridge: from raw sensors to the physical

structure of the sensors, to building a model of the robot’s effectors. Although this

work shows promise as a demonstration of the principle of knowledge-low learning, the

methods implicitly provide plenty of domain specific knowledge to the learner along

the way. For example, that the sensors are located in a three dimensional space.

Other sensors, such as sound frequency sensors in a microphone, might not have such

a physical interpretation. It’s questionable whether the same methods would work on

vastly different domains without changes to the algorithm. It’s also unclear whether

these learning methods can be “stacked” to learn more abstract concepts than just

those in the physical domain.

The work of (Kemp & Tenenbaum 2008) is more general. As its input, it takes

a matrix that’s usually a relation among entities, but may also be a set of feature

vectors. For this latter case, the algorithm uses entity graphs, which effectively posits

a relation among 2 feature-sets if they have many features in common. This approach

only posits relations among feature-sets, not the features themselves. So it’s unclear

that this approach could ever posit a theory of rotation given only a set of visual

bitmaps. Given this generative model, the algorithm calculates the probability of

the feature-set given the structural model, and uses this to search for the most likely

model. The algorithm uses graph grammars to set up a space of structural forms

that is then searched over to find the most probable form given the data. Using

graph grammars to represent the learnable space of structural forms is a shortcoming

because graph grammars can’t represent such basic structures as the generalized

concept of a clique or a lattice of unlimited degree (Ehrig et al. 1999).
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There has also been work on a inducing the structure of Bayesian networks

from feature-set data (Friedman & Koller 2003) and on inferring the structure of

Probabilistic Relational Models (PRMs) (Getoor et al. 2002), (Getoor et al. 2001b),

(Getoor et al. 2001a). However, the structures learned by these approaches are

relations among features. These approaches don’t makes analogies, and they fail to

create parameterized relations. That is, they propose link structure between features,

but, in an example where the relation between (e.g.) feature1 and feature2 is the

same type of relation between feature3 and feature4, they would fail to exploit this

property.

In our “bridge” story, we propose that “behavioral isomorphisms” play a key role

in creating relational concepts. The work most relevant for this is the work on finding

and using analogies. This work has been extensive: for example (Hummel & Holyoak

2005), (Hummel & Holyoak 2006), (Falkenhainer, Forbus, & Gentner 1989), (Gen-

tner 1983), (O’Donoghue 2005), (Dietrich 2000), (Marshall & Hofstadter 1996), and

(Hofstadter 1984). There has also been work on using analogy or graph-isomorphism

for creating relational concepts, (Gonzalez, Holder, & Cook 2002), (Holder, Cook, &

Djoko 1994), and (Nevill-Manning & Witten 1997). However, all of these systems

assume our data is in a relational form to begin with. The question of where this

relational form comes from is left open. We know of no other work on this problem

save what we’ve already mentioned. Therefore, we suggest that this question needs

addressing, for which this dissertation is a beginning, though we make no claim about

having fully answered this question.
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1.4 Contributions

The main conceptual contribution of this dissertation is providing a plausible

story of how we can go from domain-general feature-set data to a rich relational the-

ory of that data. For example, given visual data, we describe how a system might

learn to build a theory of rotation or a “gisty” theory of integers. This system is

knowledge free (i.e., it works on raw sensor data across a broad range of modalities),

unsupervised, and not dependent on time or any other explicit relational information.

Furthermore, the bulk of this system is biologically and psychologically plausible as

it loosely corresponds to neurological models of the neocortex, such as those describe

by (Riesenhuber & Poggio 1999) and (Hawkins & Blakeslee 2004). This provides

the skeleton for a bridge from sensors to a rich relational theory. This story is only

partially implemented, as a full implementation of this story is beyond the scope of a

dissertation. We argue that the mechanisms described are sufficient for constructing

even higher-level theories such as a theory of international economics (though effi-

ciency issues would have to be addressed). This dissertation provides this story as

well as implementations and plausibility studies of parts of the story.

This dissertation also has several technical contributions, the most significant

of which is a system, called “Ontol”, which takes in raw feature-set data (such as

the pixels from a collection of image bitmaps) and constructs and uses an ontology

for inference and prediction. Ontol serves as a general learner and reasoner and can

be used by other systems as long as the other systems can couch their problems as

feature-sets. Therefore, we propose that Ontol might serve as the backbone or pow-

erhouse for the bridge and for a fully intelligent system, eventually. In Ontol, the

dynamic interplay of 2 relatively simple learning procedures, “chunking” and “merg-
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ing”, allows us to construct a conceptual structure built of intensions and extensions

that allows us to represent and recognize some invariant concepts. This approach

is independent of any specific modality. Ontol can also use the same algorithms on

previously discovered invariant concepts to create even higher level concepts which

will allow for generalizations that aren’t easily created without invariant concepts.

These generalizations would be analogous to discovering the “<subject> <verb>

<object>” pattern in a set a strings generated from a simplified English grammar.

Using Ontol, we make the following technical contributions:

1 An application of Ontol that is a semi-supervised learning system that takes in a

large number of unlabeled feature-sets and learns a target concept using a mere

handful of labeled training instances. This both demonstrates the utility of the

ontology created by Ontol, and is a useful algorithm in itself since it uses fewer

training instances than needed by previous systems. Furthermore, we show how

this system can learn in the absence of negative evidence.

2 An algorithm that uses ontologies generated by Ontol to improve performance on

Reinforcement Learning tasks (Sutton & Barto 1998). We use the concepts

learned by Ontol to find useful macro-actions, which can be used used to de-

crease learning time and increase reward overall for these tasks.

3 An energy function, derived through information theoretic principles, that provides

a quantitative measure of the utility for ontology construction and similar mod-

els. Ontol searches for conceptual structures that best minimize this function.

Although we consider the core technical contribution of this dissertation to be

Ontol, we’ve also provided simple-yet-concrete “proof of concept” implementations
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for some of the other parts of the bridge. The point of these implementations is not

to provide a rigorous scientific exploration of these ideas (which would be beyond the

scope of this dissertation), but to demonstrate feasibility of our ideas and to provide

a starting point for future work. These additional technical contributions are listed

below:

4 An implementation of how parameterized functions are called and represented in

the same representation framework used by Ontol.

5 A model of analogy that exploits behavioral isomorphism (as opposed to structural

isomorphism), which is hitherto unexplored. We’ve provided an implementation

for “behavioral signatures” for conceptual structures, and have given a proof-of-

concept example that concretizes how these signatures can be used to quickly

find analogies for non-pathological cases.

6 A system for representing and discovering transformations, such as color and affine

transforms for images or pitch, speed, and “accent” transforms for speech data,

without depending on temporal information, and we’ve shown how these trans-

formations allow us to compress the data set and make inferences on the data.

1.5 A Road Map

The remainder of this document is organized as follows:

Chapter 2 gives a high level description of the full story for how a computer

might go from raw feature-set sensor data to a rich relational theory of that data,

with notes on which parts are implemented as part of this dissertation.
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Chapter 3 describes Ontol, the major technical contribution of this work: a

system, loosely based on cortical models, that builds and uses a conceptual ontology

using intensions and extensions.

Chapter 4 describes a novel model of analogy that is able to find behaviorally-

similar parts of the ontology and use them to better characterize input data.

Chapter 5 describes a novel algorithm that discovers transformations, such as

rotation in visual data, and uses these transformations to compress the input data.

Chapter 6 goes into detail about the remaining unimplemented steps for finishing

the bridge.

Chapter 7 discusses other missing components for a fully intelligent system, and

how these missing components might integrate into the existing story.

Chapter 8 evaluates what conclusions we can draw from the implemented com-

ponents about intelligence and describes the next steps for achieving this goal.



Chapter 2

SOLUTION OVERVIEW WITH A RUNNING

EXAMPLE PROBLEM

This chapter provides an overview of how a system can develop a rich relational

theory from raw sensor data. A running example in a simplified vision domain will

illustrate some of our assumptions.

2.1 A running example problem

As our running example, we’ll use the set of black and white line drawings taken

from (George 2008). Each image is a 50 by 50 grid of pixels that are each either ON

or OFF. Examples of these images are shown in Figure 2.1. Each image contains

one of 181 simple shapes under various rotation and translation transforms, giving

us 100,000 total images. From this data set, we want to develop notions such as

translation, rotation, and scaling.

The input to our system is a set of features. As shown in Figure 2.2, each pixel is

27
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Fig. 2.1. A sampling of 50 by 50 bitmaps. Note that the two images on the
right are the same shape under different translations and rotations.

a feature, with a value of either “ON”, “OFF”, or “UNSPECIFIED”. These features

are given unique names (such as “Sensor2409”). We stress that our algorithm needs

to be free of any innate domain knowledge. Instead, knowledge about the domain

needs to be acquired from massive amounts of data, which we assume we’re given.

So the features’ names are to be treated as gensyms. That is, the feature names

themselves provide no information about the features’ meanings.

Since the sensor names have no connection to the sensors’ meanings, the num-

bering is in an arbitrary order, so the image in Figure 2.2 is seen as the feature-set

in Figure 2.3. At this point, the computer only sees this instance as a set of fea-

tures. The computer isn’t told that the features come from a visual domain, and the

computer isn’t told that Sensor0351 has anything more to do with Sensor0352 than

it does with Sensor2407. The computer’s data for this example is a set of 100,000
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Fig. 2.2. A sensor grid. We’ve arranged the 2,500 sensors in a 50 by 50 grid,
though the computer doesn’t have this ordering knowledge. In this example, 78 of
the sensors are ON (including Sensor0351), and the other 2422 sensors are all OFF.
We also allow that a sensor can be “UNSPECIFIED”.
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{ Sensor0002=ON, Sensor0017=ON, Sensor0048=ON, Sensor0055=ON, Sensor0056=ON, Sensor0117=ON,

Sensor0175=ON, Sensor0180=ON, Sensor0197=ON, Sensor0233=ON, Sensor0269=ON, Sensor0284=ON,

Sensor0341=ON, Sensor0351=ON, Sensor0404=ON, Sensor0444=ON, Sensor0483=ON, Sensor0490=ON,

Sensor0551=ON, Sensor0567=ON, Sensor0573=ON, Sensor0623=ON, Sensor0711=ON, Sensor0729=ON,

Sensor0763=ON, Sensor0779=ON, Sensor0798=ON, Sensor0827=ON, Sensor0833=ON, Sensor0859=ON,

Sensor0947=ON, Sensor0956=ON, Sensor1027=ON, Sensor1043=ON, Sensor1132=ON, Sensor1137=ON,

Sensor1188=ON, Sensor1214=ON, Sensor1239=ON, Sensor1244=ON, Sensor1275=ON, Sensor1305=ON,

Sensor1308=ON, Sensor1352=ON, Sensor1395=ON, Sensor1452=ON, Sensor1555=ON, Sensor1572=ON,

Sensor1579=ON, Sensor1582=ON, Sensor1631=ON, Sensor1651=ON, Sensor1655=ON, Sensor1771=ON,

Sensor1796=ON, Sensor1853=ON, Sensor1891=ON, Sensor1898=ON, Sensor1968=ON, Sensor2059=ON,

Sensor2129=ON, Sensor2137=ON, Sensor2161=ON, Sensor2186=ON, Sensor2195=ON, Sensor2206=ON,

Sensor2214=ON, Sensor2218=ON, Sensor2227=ON, Sensor2247=ON, Sensor2258=ON, Sensor2308=ON,

Sensor2325=ON, Sensor2344=ON, Sensor2355=ON, Sensor2363=ON, Sensor2398=ON, Sensor2406=ON,

Sensor0000=OFF, Sensor0001=OFF, Sensor0003=OFF, etc.... (all 2,419 other sensors are OFF) }

Fig. 2.3. The raw grid representation as seen by the computer. The pixels
correspond to sensors, which are given arbitrary but fixed numbers.

of these feature-sets (one for each of our 100,000 images). For now, we assume that

these 100,000 feature-sets are all given in batch mode, though ultimately we’d like

for the system to run on sequential data.

Each image is then an unordered set of these features. So, for the computer, the

pixels may as well be scrambled in an arbitrary order. To get an idea of the difficulty

of the task the computer faces, this scrambling is shown in Figure 2.4. Initially, the

computer assumes no relation among the features. The computer doesn’t know what

the sensors mean, nor know which sensors are close to each other, nor that these are

even from a spatial or contiguous domain.

Consider the “dog” image on the top, 2nd from the right in Figure 2.4. The

shape in the image to its right is a slight rotation of the dog shape. Though these

look similar to us, only 20% of the same Sensors are ON in both of these feature-set.

Conversely, nearly half of the ON Sensors in the image to the left of the dog are also

ON in the dog image.

Due to these extreme limitations on putting knowledge into our system, it may
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Fig. 2.4. A representation of the difficulty of the problem. The computer
is not told which pixels are adjacent to which. To get an idea of what this is like
for the computer, we’ve rearranged the pixels for each top image using an arbitrary
ordering to get the image below it. The ordering is the same for all images. The
computer’s problem is actually more difficult: the computer is neither told that its
sensors are pixels nor is it given any notion of what a pixel is to begin with. All these
concepts must be learned. Note that the two images on the top right are slightly
rotated versions of the same shape. Just a slight rotation or translation of a shape
will cause a nearly-disjoint set of sensor to turn ON.



32

seem like this task is rather difficult or even impossible. Indeed, the idea of postulating

relations from non-relational data may seem absurd. However, there’s some evidence

that this is possible.

An initial approach we might use to “unscramble” the sensors is following the

ideas of (Pierce & Kuipers 1997). Namely, we can assume a relation between sensors

a and b if the correlation between them exceeds some threshold. Doing so on the

image dataset yields encouraging results. In the grid shown in Figure 2.5, we’ve con-

nected each of the sensors (represented as nodes in the graph) with its 8 most highly

correlated neighbors. For clarity, we’ve used a smaller grid: 20 by 20 thresholded

image patches taken from natural images.

For this dataset, a node’s 4 immediate neighbors (above, below, left, and right)

were nearly always among the node’s top 8 most highly correlated nodes. And in

general, a node’s 8 immediate neighbors roughly corresponded to the 8 nodes most

highly correlated with it, but there are plenty of exceptions. If we use the same

connectivity to layout the graph with an automated graph-layout system, we get a

grid-like layout as shown in Figure 2.6.

Though in Figure 2.6 it may seem as though we’ve gotten back our grid structure,

we’ve actually done this by putting some of our own domain knowledge into the

system, which should be discouraged. We set each node’s number of neighbors, we’ve

stated that each node has the same number of neighbors, by using the planar graph-

layout algorithm we’ve implicitly stated how many dimensions the space of the nodes

is in (two), and we’ve claimed that these nodes are adjacent or spatially located to

begin with. As it is, this approach would break if we had thresholded red, green,

and blue values for each pixel instead of just black and white. This “color” approach
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Fig. 2.5. Postulating relations as correlation on a 20 by 20 grid. Each sensor
is connected to its 8 most highly correlated neighbor. The location for each node was
explicitly provided by us. These correlations are taken from a dataset of 20 by 20
patches from thresholded natural images.
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Fig. 2.6. The “natural” layout using an automated graph layout with the
connectivity from Figure 2.5.
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would mean that we have 3 sensor for each pixel.

So we have to be careful. We want the same algorithm to work across a broad

range of domains with no modification. Though our running example is from an image

domain, we can’t apply any image-specific knowledge to our solution. We can’t use

line segmentation or edge detection, for example. If these features are useful, they

need to be discovered by our system.

Not all domains are explicitly spatial or temporal. For example, the card game

Poker has no explicit spatial component. Analysis of a static structure, such as

a bridge, has no explicit temporal component, and a static analysis of user movie

preferences, where we’re given what users rated movies (but not when they gave

those ratings), is neither explicitly spatial nor temporal.

2.2 Solution Overview

The example from the previous section illustrates how our hands are tied. We

can’t rely on any of our own knowledge about images. We can’t even tell the computer

which pixels are adjacent to each other. This forces us to find what’s common among

systems with wildly different modalities. It forces us to simplify our algorithms to

their core. This calls for algorithmic elegance, though it’s usually more difficult to

make something work by simplifying it than by making it more complicated.

In our running example, we’d like to build a system that learns a Theory of

2D Object Rotation. We’d want the system to build the theory being told almost

nothing about space (two dimensional or otherwise). We want to build a bridge
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from raw feature data to a theory that recognizes 2D shapes at different rotations.

Ultimately, this theory of rotation that our system develops should include a concept

that corresponds to our idea of “angle of rotation”. That is, it should parameterize its

concept of rotation with a degree. We’d also like our system to develop some notion

of a “scalar”, and that a degree is a scalar just as is “quantity” if it’s characterizing

piles of apples.

We propose a bridge consisting of 5 phases:

Phase 1 is a system called “Ontol”, which constructs an ontology from a set of

feature-sets. The ontology consists of both conjunctions and disjunctions, which

some models have shown may be sufficient for representing a large range of

invariant concepts (Hawkins & Blakeslee 2004), (George & Hawkins 2009),

(Riesenhuber & Poggio 1999). We’ve implemented the core parts of this phase

in this dissertation.

Phase 2 creates parameterized concepts by finding behaviorally isomorphic regions

of the ontology and parameterizing the differences. In doing this on our image

dataset, Phase 2 should also find concepts that are invariant to transformations

such as translation, rotation, and scaling. We’ve implemented some parts of

this phase as a proof of concept.

Phase 3 discovers transformations (such as rotating by 45 degrees) by finding con-

sistent mappings among invariant instances of the same concept. We’ve also

implemented parts of this phase as a proof of concept.

Phase 4 then parameterizes these transformations by finding consistent properties

among several types of relations. For example, quantities of apples are similar to
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degrees of rotation in that 57 apples is more similar to 56 apples than it is to 20

apples, just as 57 degrees is more similar to 56 degrees than it is to 20 degrees.

Given this, the system should generalize the notion of “quantity” (though it

won’t know the name) and use this to describe both apples and angles. This

phase is still conceptual.

Phase 5 represents relational structures as feature-sets, then uses Ontol on these

feature-sets to create and use an ontology of relational structures. We propose

this as a basis for metacognition. This phase is also currently conceptual.

Ideally, all 5 of these phases should run concurrently, though this is future work.

2.2.1 Phase 1: Building and Using an Ontology from Feature-Sets

The first phase is a system, called Ontol, that builds an ontology from an input

set of feature-sets. In our example, this input set is a collection of 100,000 feature-

sets, each of which has 2,500 features. We also allow that not all of the 2,500 features

need be specified for each feature-set. If a feature’s value is unknown, it’s simply

omitted. For raw sensor data, this allowance may not be necessary, but data will be

unknown for higher level concepts.

Ontol is based on cortical models, particularly the Hierarchical Temporal Mem-

ory (HTM) model of (Hawkins & Blakeslee 2004) and the HMax model of (Riesenhu-

ber & Poggio 1999). Both of these models describe connectionist perceptual systems

that consist of 2 types of nodes. The ontologies in these systems both consist of what

can be thought of as conjunctive and disjunctive nodes. Once built, Ontol uses its

ontology in a manner similar to that of HTMs, in that it uses both bottom-up and
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top-down reasoning. The specifics of how Ontol builds and uses these structure are

fully detailed in chapter 3.

Ontol’s ontology is a collection of conjunctive and disjunctive nodes, which we call

ANDs and ORs, respectively. These nodes are linked together to form a heterarchy,

which is a like a hierarchy, but allows that nodes may have multiple parents. We don’t

allow nodes to point to their ancestors, so the ontology is a directed acyclic graph.

We can turn the ontology into a concept lattice by creating a “top” and “bottom”

node and pointing the top to nodes without parents, and pointing the leaf nodes to

the bottom node.

The goal of Ontol is to characterize the input data in an unsupervised manner.

Taking a Bayesian approach to model building, Ontol searches for the most probable

model given the data. Following (Wolff 2003) and others, we assume a description-

length prior, which essentially means that Ontol searches for the shortest model that

describes the data. A caveat is that Ontol’s model is lossy, so we add − log2 P (D|M)

to the model’s description length, where P (D|M) is the probability of the data D

given the model M .

Generally, an OR node is set to ON if any of its children are ON, and if an AND

node is ON, then all its children are turned ON (if nothing is keeping them OFF).

Nodes can also have inhibitory connections, so if an AND node is on and has an

inhibitory connection to a child node, that child node will be OFF. Initially, each node

in our observed data is marked as “unexplained”. If an AND node has an excitatory

connection to an ON but “unexplained” node, then if we set the AND node to ON,

the unexplained node will become explained and the AND node will be unexplained.

That is, the AND node explains the observed node, but must then be explained itself.
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Additionally, AND nodes will “compete” to “explain” their children. If 2 AND nodes

both have excitatory connections to a child that’s ON but unexplained, then both

AND nodes will be swayed to be ON. As soon as one of the AND nodes is set to ON,

the child will be explained, and the other AND node will no longer have this influence

to be ON. For an example drawn from Bayesian networks, suppose we have a sensor

that’s ON if and only if a burglar alarm sounds, and the alarm can be caused by both

a burglary or an earthquake. Then our network would be 3 nodes: Alarm, Burglary,

and Earthquake, where both Burglary and Earthquake would be AND nodes pointing

to Alarm, as shown in Figure 2.7. If the alarm sounds, and we know that Earthquake

is ON, then Burglary is no longer pushed to be ON to explain the alarm. Note that

though Burglary is no longer pushed to be ON to explain the alarm, it’s not being

inhibited either. Burglary might have other children that need to be explained, so

it’s conceivable that both Alarm and Burglary are ON.

Conversely, if an OR is ON but none of its children are ON, then the children

are pushed to be ON to “instantiate” the OR. As soon as one of the OR’s children

turn ON, the other children lose this drive to be ON.

ANDs and ORs are simple concepts, but (Hawkins & Blakeslee 2004) and (Riesen-

huber & Poggio 1999) argue that these are sufficient for representing sophisticated

concepts, such as a good number of invariant concepts. For example, we see the 2

“dog” images at the upper right of 2.4 as basically the same shape. That means that

we’re able to represent this shape that doesn’t change with the shape’s rotation. So

we have an concept for this shape that’s invariant with respect to its rotation angle.

Figure 2.8 gives a simplified example of how ANDs and ORs can be used to rep-

resent concepts from our visual domain example that are invariant to translation and
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"Alarm"

"Earthquake"

AND

"Burglary"

AND

Fig. 2.7. Earthquake and Burglary both as explanations for Alarm. If
Earthquake is ON, then Burglary is no longer pushed to be ON to explain Alarm.

rotation. In this example, the “dog” concept may take on 2 forms, so it’s represented

as an OR. Each of these forms is AND, which may be thought of as a bag of features.

Consider the form of “dog” on the right (which is the same as the “dog” shape in

Figure 2.4). Suppose we wanted to represent all forms of this shape: all translations,

rotations and combinations of these. One approach would be to explicitly list all

variants of this shape using a giant OR. To quantify this, suppose we have 24 different

rotations (0◦, 15◦, 30◦, · · · , 345◦), and 2,500 translation shifts (recentering the image

on each of the 2,500 pixels). This gives 60,000 possible variants for each image. So,

using this approach, if we wanted to represent all 181 of our images, we’d have to

have list a total of 10,860,000 images. This approach is not only costly memory-wise,

but it offers no transfer of knowledge, so it would need to be explicitly shown all

10,980,000 images for its library to be complete. In reality, we’d likely have more

than just the 181 sample images, we’d likely have thousands of shapes we’d want to

recognize.

Another approach is more efficient with generalization and memory, with a slight
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accuracy cost. We consider this accuracy cost to be acceptable, since human vision

isn’t always accurate as evidenced by various optical illusions and false identification.

Instead of memorizing 60,000 variants of each of the 181 shapes, we can have a handful

of “basic shapes” each of which we represent invariantly with a 60,000 item OR. That

is, we list all 60,000 variants for each of these smaller shapes. This is less taxing for use

because it’s only a handful of shapes and also because each “basic” shape is smaller

than a full high-level shape. Essentially, we “reuse” the basic shapes across multiple

images. An example of such an OR is shown as the lower OR in Figure 2.8. Each of

the 3 children of the OR shown is an AND that has as its components the specific

pixel values for the shown shape in a particular location. For example, the leftmost

AND might be the set of 9 pixel values: {x10y12=ON, x10y13=ON, x10y14=ON,

x10y15=ON, x10y16=ON, x10y17=ON, x10y18=ON, x09y14=ON, x08y14=ON}.
In reality, this OR should have 60,000 children instead of just the 3 shown. Once we

have this explicit invariant representation of these low-level features, we can repre-

sent invariant higher-level features by saying the parts they consist of. That is, we

represent the higher-level features as a bag of lower-level features. We lose informa-

tion here because for 2 low-level features in a bag, we don’t specify which instance of

one low-level feature goes with which instance of another. We ameliorate this loss of

information by ensuring plenty of overlap among the bags.

Our representation uses the insights from the latter approach. The “dog” shape

on the right of Figure 2.8 is represented as a bag of features, each of which is the shape

part, invariant of translation and rotation. Note that the features have overlap with

each other. The dog’s children from left to right can be thought of as the “body”, the

“head”, the “neck”, and the “tail”. Note that nothing explicitly says that the dog’s

neck overlaps with (or “connects”) the dog’s body and the dog’s head, or that they’re
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even connected at all. Conceptually, it’d be possible to have a disjoint bag of features

that are all ON but clearly don’t make up a dog. However, with enough parts in our

AND, the visual canvas will be too small to arrange all these parts so that they all

fit without some overlap, and, as discussed in (Riesenhuber & Poggio 1999), a great

amount of overlap makes it difficult to arrange all the dog parts in anything but a

dog. Note that the left and right forms of the “dog” share some features. This feature

reuse is fundamentally what allows us to represent invariant concepts efficiently.

Thus, if we know that the right-side dog shape is ON, we don’t necessarily know

the values for our low-level inputs, but we can turn a configuration for these low-level

inputs ON and test whether it causes the dog’s bag of features to be active. Thus, the

bag of high-level features that is our definition for “dog” effectively works as a one-

way “hash” or “signature” for this concept. Unlike checksums, we prefer signature

continuity. That is, if 2 shapes are similar, then they should have similar hashes.

A problem we plan to explore in future work is searching for low-level configu-

rations to satisfy the high-level signature. If relational structures can be represented

as feature-sets, as we argue in Chapter 6, then we can use this search to do plan-

ning (among other functions) by encoding actions as low-level features and goals as

high-level constraints.

To build this structure, we propose using 2 processes: chunking and merging.

Chunking, which we investigate in detail in Chapter 3, finds ANDs by searching

for feature-sets that are large and/or occur as subsets of other feature-sets in our

ontology. Merging finds ORs by finding sets of features that occur in similar contexts

as each other, but rarely occur with each other. We provide a proof-of-concept for

Merging in Chapter 3, but we leave a rigorous investigation for future work.
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Fig. 2.8. Representing invariance with extensions (“OR”s) and intensions
(“AND”s).

The chunking algorithm finds concepts that will help compress the data. If a set

of features has n elements and occurs m times, we can use it to save mn − m − n

links in the ontology by creating a new AND node for this feature-set, having it point

to its n elements, then, for every feature-set that has these n elements, remove those

n, and instead replace them with a single link to the new AND node. The new node

is then a (non-primitive) feature itself. Essentially, chunking is finding feature-set

overlap and using it to compress or “explain away” the data. A useful chunk is then

turned into a concept and added to the ontology as a feature-set, and this process is

repeated. New chunks may include feature-sets from both “original” feature-sets and

older “discovered” sets. Thus, chunking builds a multi-level conceptual heterarchy1.

When chunking is applied to our example bitmap dataset, it comes up with

1This is a “heterarchy” as opposed to a hierarchy because a node may inherit from multiple
parents. In a strict hierarchy, nodes have only 1 parent, at most.
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Fig. 2.9. A sampling of chunks discovered by our “crunching” algorithm.
Concepts are shown in the order they were discovered from top to bottom, left to
right. Note that these chunks tend to be clusters of adjacent pixels, though our
algorithm was told nothing about the dimensional nature of the pixels. Also, note
that we have arranged the pixels in a grid to more easily see the chunks.

features such as those shown in Figure 2.9. These feature-sets tend to be contiguous

groups of adjacent pixels. So chunking was able to find some idea of pixel contiguity

with nothing specific to vision encoded in the algorithm. As will be shown in Chapter

3, this same algorithm can be used on virtually any binary feature-set.

When we apply chunking alone to a small set of 183 20 by 20 patches randomly

taken from natural images, we get the ontology shown in Figure 2.10, which gives an

idea of the structure of the heterarchy found. (The ontology found from the bitmap

data was too large to be illustrative.)

Merging works by finding features that are interchangeable. These features can

be primitive features or higher-level “created” features. For features or concepts to be

interchangeable, we need to consider the context under which they’re interchangeable.

For example the words “dog” and “memory” don’t have much in common in terms
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Fig. 2.10. An ontology created by “chunking” a set of 20 by 20 patches
taken from natural images. Note that the chunks found tend to be contiguous
sets of pixels. Arrows all point downward and represent inheritance. Each node is
an AND and is shown as the “flattened” image of the nodes from which it inherits.
For this example, we only specified a pixel ON if it’s black. White pixels were all left
UNSPECIFIED. The original feature-sets are identifiable as the AND nodes with no
parents. Not shown are the 35 all-white patches, which would be grouped with the
nodes on the right that have no parents.

of their semantics, but both are nouns and both can play the same syntactic role

in sentence construction. Likewise an aluminum baseball bat and a soda can are

the same in terms of which recycling bin to put them in, but different with respect

to their utility for hitting baseballs. When a set of concepts are found that are

interchangeable, we “merge” them, creating an equivalence class with these items.

We then use this equivalence class as an OR node in our ontology.

Merging allows us to more easily find useful chunks. For example, the “<noun>,

<verb>, <noun>” construction in English wouldn’t be as easily visible without the

concept of <noun>s and <verbs>s. Another example is shown in Figure 2.11, where

routes along a commute are shown to be equivalent under a certain context. Once

these equivalence classes are found, we can find patterns such as “Tim is at home.

Tim takes a work-bound route. Tim is at work. Tim takes a home-bound route. Tim

is at home.”.



46

Fig. 2.11. “Equivalent” routes from New York City to Albany. The image
on the left shows the route taking Interstate 87 and the route via the Taconic State
Parkway on the right. There are many differences between the routes, to be sure.
The route on the left passes near Stewart International Airport, for example. But
both routes form an equivalence class in the context of ways to drive from New Work
to Albany in roughly 3 hours.

Merging comes at a cost, though: it is lossy, and decreases the probability of

getting the data from the ontology. This lossiness is balanced by the ability we gain

to form new concepts. Ultimately, merging will allow us to compress the input data,

which we will discuss in Chapter 3.

Currently, only Chunking is fully implemented, but in future work, Ontol will

interleave these 2 process —chunking and merging— to create an ontology consisting

of ANDs and ORs like that in 2.8.

Although the AND/OR representation we use is sufficient for representing a

“dog” invariant of its rotation, translation, and scale, chunking and merging by them-
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selves are insufficient for discovering this invariance.

To see this, consider translation invariance. Suppose we have a set of 100 images

of identical dog shapes, except each image is the shape translated to a different place

on the grid. Further suppose that chunking has carved up each dog into a head, a

neck, and a body. At this point, we’ll have 10 instances of “dog head”, say doghead1,

doghead2, · · · , doghead10. Note that these names are for our convenience for this

example, but they have no meaning for our system. These names may as well be

Gensym-XQ41J, Gensym-P87UF, etc.. So we don’t know that these dogheads have

anything to do with each other. None of the dogheads occur in the same context:

doghead1 occurs with dogbody1 and dogneck1, while doghead2 occurs with dogbody2

and dogneck2.

If we knew that doghead1, · · · , doghead10 formed an equivalence class (call it

DOGHEAD), then merging would recognize that dogneck1, · · · , dogneck10 and dogbody1,

· · · , dogbody10 all occurred interchangeably in the same context as DOGHEAD, and

may form an equivalence class with all these. Note that, at this point dogbody1 and

dogneck1 are symmetrical, so we still have no way of creating the equivalence class for

DOGBODY. If the dogbodys all occurred in some other context (such as with WOLFHEAD),

then this would break the symmetry, and merging would form the equivalence classes

DOGBODY and DOGNECK.

This all begs the question of where we get DOGHEAD and WOLFHEAD to begin with.

Both occur in the occur in the context of DOGBODY, and vice versa, but we need to

find one of these equivalence classes initially. To do this, we need to look for patterns

in the relations among these features. This is where the next phase, Parameterized

Concepts, comes in.
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2.2.2 Phase 2: Parameterized Concepts

Once Ontol has created an ontology with our data, we may notice that different

parts of the ontology are basically isomorphic. For example, the ontology that covers

the 10 by 10 square in the upper right of our bitmap sensor grid from Figure 2.2 will

behave a lot like the 10 by 10 square in the lower left. So we have what’s basically the

same functionality repeated twice (many times actually). If we could extract out this

functional overlap, not only would we decrease our description length, but we’d get

other benefits such as generalization and knowledge transfer. Essentially, this is an

analogy from one cortical region to another. Analogy has been shown to have many

cognitive benefits by (Hofstadter 2001), (Forbus 2001), (Dietrich 2000), to name a

few.

This extraction is what Phase 2 does. Phase 2 does analogical schema induction

by finding behavioral overlap among cortical regions (i.e., cortical regions that behav-

ior similarly to each other), forming a new concept by extracting out the similarity,

and parameterizing the differences. That is, where the cortical regions differ, we cre-

ate slots that can have various fillers. These fillers then form an equivalent class. For

example, if we see the following situations (and others like them):

1.

Martha has a pen.

Doug takes the pen.

Martha no longer has the pen.

2.

A black ant has a beetle corpse.

A red ant takes the beetle corpse.

The black ant no longer has the beetle corpse.
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3.

A company has a corporate secret.

A corporate spy takes the corporate secret.

The company no longer has the corporate secret. (It’s no longer a secret.)

we might create the concept “steal”, which has the following definition

Z has Y.

X takes Y.

Z no longer has Y.

where X, Y, and Z are slots or parameters for this concept. Then we can encode our

3 cases using this new concept:

steal (Doug, pen, Martha)

steal (corporate spy, corporate secret, company)

steal (red ant, beetle corpse, black ant)

Now we form equivalence classes with the fillers

X = OR (Doug, red ant, corporate spy, · · · )
Y = OR (pen, beetle corps, factory plans, · · · )

Z = OR (Martha, black ant, company, · · · )

Thus, Doug, red ant, and corporate spy (among others) form an equivalence class

because they can fill the slot X. We might also note that these share the intensional

quality that they’re all animate.

To see how this might be applied to our bitmap grid example, suppose chunking

and merging gives us the following sets:
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{{doghead1, dogbody1, dogneck1}, {doghead2, dogbody2, dogneck2},

{doghead1, a1, b1}, {doghead2, a2, b2},
{dogneck1, b1, c1}, {dogneck2, b2, c2},

{dogbody1, a1, c1}, {dogbody1, a2, c2},

{doghead3, dogbody3, dogneck3}, {doghead4, dogbody4, dogneck4},

{doghead3, a3, b3}, {doghead4, a4, b4},
{dogneck3, b3, c3}, {dogneck4, b4, c4},

{dogbody3, a3, c3}, {dogbody1, a4, c4}}

If we create the definition for a new parameterized concept M , where M is shorthand

for the set of sets below,

{{H, B, N},

{H, X, Y},
{N, Y, Z},

{B, X, Z}}

where H, B, N, X, Y, and Z are all variables, then we can use M to compress our

original 16 statements into just 4 statements.

M(H=doghead1, B=dogbody1, N=dogneck1, X=a1, Y=b1, Z=c1)

M(H=doghead2, B=dogbody2, N=dogneck2, X=a2, Y=b2, Z=c2)

M(H=doghead3, B=dogbody3, N=dogneck3, X=a3, Y=b3, Z=c3)

M(H=doghead4, B=dogbody4, N=dogneck4, X=a4, Y=b4, Z=c4)

Note that the parameters that can fill inH, namely doghead1, doghead2, doghead3,
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and doghead4, then form an equivalence class (as do the parameters the can fill in

B, N, X, Y, and Z).

The example we’ve shown here is filled with simplifying assumptions, but pro-

vides the basic idea for how we can get translation invariance. As we suggest later,

once these assumptions are addressed, this approach can also give us rotation invari-

ance, scale invariance, and other transform invariances.

When searching for concepts, such as M , we use the same principle as for Ontol,

namely we search for concepts that allow us to compress the data.

A problem with this approach is that we assume that each instance of the dog

is carved up in a similar way. In reality, this is rarely the case. Furthermore, we

want to find subgraphs in our ontology that have similar behavior as how they make

inferences (using Ontol’s inference algorithm). This is because an ontology can be

thought of as a Boolean expression, a series of conjunctions and disjunctions. For

any truth-table, there are many forms of a Boolean expression that will also have this

truth-table. Note that if 2 regions are structurally isomorphic, they will also behave

the same, so Phase 2, when fully implemented, will find regular analogy in addition

to “behavioral analogies”.

Determining the equivalence of 2 Boolean expressions is NP-hard. This is be-

cause if we had a polynomial-time algorithm for determining equivalence of a Boolean

expressions, then we could use it to solve 3-SAT in polynomial-time simply by de-

termining whether the 3-SAT instance was equivalent to “False”. But we’re only

interested if 2 cortical regions behave similarly. Their behavior doesn’t have to be

completely isomorphic. With this in mind, we use “behavioral signatures” (described



52

in Chapter 4) to quickly determine whether 2 cortical regions are behaviorally iso-

morphic. We have implemented behavioral signatures as a proof-of-concept, but we

leave a rigorous investigation of these as future work.

Finding behaviorally isomorphic (or nearly isomorphic) regions gives us all the

benefits we get from analogy use and discovery: generalization, lower description

length, transfer of knowledge, etc. as discussed in (Hofstadter 2001) and elsewhere.

For our bitmap grid example from Figure 2.2, note that if some cortical region

“A” is behaviorally isomorphic to some other cortical region “B”, then A will also

be behaviorally isomorphic to B rotated 90 degrees. If we go up the heterarchy a

few levels, cortical region A will also be behaviorally isomorphic to cortical region

B rotated 15 degrees. Also, in terms of scale, cortical region A will behave like the

cortical area for our entire grid if we go up several levels in this latter. This gives an

idea for how Phase 2 gives us scale invariance. Further details of this approach are

given in Chapter 4.

2.2.3 Phase 3: Discovery of Mappings

By finding behaviorally isomorphic regions of our ontology, we’ll recognize that

one “dog” shape is the same as another version of the same shape rotated 45 degrees,

but we won’t have generalized the idea of rotating a shape 45 degrees. That is, we

won’t recognize that the relation between a “dog” and the rotated dog is the same as

the relation between a “duck” shape and the same shape rotated 45 degrees.

Thus, it would be useful to discover a set of mappings. We assume that we have

a collection of feature-sets that, through Phase 2, we know to all form an equivalence
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class. For example, we recognize that

{doghead1, dogbody1, dogneck1}
{doghead2, dogbody2, dogneck2}

{doghead3, dogbody3, dogneck3}

{doghead4, dogbody4, dogneck4}

are all instances of the “same” shape. Furthermore, we know that

{cathead1, catbody1, catneck1}

{cathead2, catbody2, catneck2}
{cathead3, catbody3, catneck3}

{cathead4, catbody4, catneck4}

are all instances of the same shape and likewise for instances of each of our 181 basic

shapes. At this point, we should point out that there will be a good deal of overlap

among our features. So a more realistic example for our shapes might look more like

the following:
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Shape 1

{090.15, 090.05, 000.10, 000.10, 000.10, 000.15}

{045.15, 135.05, 045.10, 045.10, 045.10, 135.15}
{060.10, 060.10, 060.10, 060.15, 150.15, 150.05}

Shape 2

{000.25, 090.15, 090.15, 090.15, 090.15, 090.05, 000.05, 000.05}
{045.25, 135.05, 135.15, 135.15, 135.15, 135.15, 045.05, 045.05}

{060.05, 060.05, 150.15, 150.15, 150.15, 150.15, 060.25, 150.05}

Shape 3

{000.25, 000.05, 000.05, 000.10, 000.10, 090.25, 090.25, 090.10}

{045.25, 045.10, 045.10, 045.05, 045.05, 135.10, 135.25, 135.25}
{060.05, 060.05, 060.10, 060.10, 150.25, 150.25, 150.10, 060.25}

Shape 4

{000.25, 000.25, 090.15, 000.10, 090.25, 090.10}

{045.25, 045.25, 045.10, 135.15, 135.10, 135.25}

{150.15, 150.25, 150.10, 060.25, 060.25, 060.10}

In this hand constructed example, the feature “090.25” means that the shape has

a line that has rotation angle of 90 degrees and length from between 20 and 25 pixels.

In reality, our results from Phase 2 won’t be as easily interpretable. Note that these

aren’t proper sets, but rather “bags”, since features can occur more than once, as

“000.10” does in our first set. (This means that this shape has 3 lines of length 10 at

a 0 degree orientation.) Here we’re told that the first 3 feature-sets are all instances

of Shape 1, but these sets are in no particular order for our system. We know that the

1st is from the “non-rotated” version of the shape, the 2nd is the shape rotated 45

degrees, and the 3rd is the shape rotated 60 degrees, but our system isn’t given this

information. In this example, there’s a 1 to 1 correspondence between a feature and
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the “rotated” version of that feature in the “rotated” feature-set. In reality, there’s

more noise than this. These issues are further addressed in Chapter 5.

We can then compress the data by using the following mappings

Mapping A Mapping B

000.05 → 045.05

000.10 → 045.10

000.15 → 045.15

000.25 → 045.25

090.05 → 135.05

090.10 → 135.10

090.15 → 135.15

090.25 → 135.25

000.05 → 060.05

000.10 → 060.10

000.15 → 060.15

000.25 → 060.25

090.05 → 150.05

090.10 → 150.10

090.15 → 150.15

090.25 → 150.25

These mappings are applied to a feature-set, and (using mapping A) if the feature

000.05 appears in the feature-set, it replaces it with 045.05. For example, if

S1 = {090.15, 090.05, 000.10, 000.10, 000.10, 000.15}

then we can apply mapping A to S1 (by calling A (S1)), which maps the components

as shown below.

S1 = {090.15, 090.05, 000.10, 000.10, 000.10, 000.15}
↓ ↓ ↓ ↓ ↓ ↓

A (S1) = {135.15, 135.05, 045.10, 045.10, 045.10, 045.15}

Thus, A (S1) is identical to the 2nd instance of Shape 1. So, we can simply say
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A (S1) instead of listing out all the components of the 2nd instance of Shape 1. So

we can apply these mappings to express our data as

Shape 1

S1 = {090.15, 090.05, 000.10, 000.10, 000.10, 000.15}

A (S1)

B (S1)

and similarly for Shapes 2-4. Thus, we need only express the mappings and an

instance of each shape.

This is what Phase 3 does: finds mappings, such as those shown here to compress

the data. Note that mapping A corresponds to rotating a shape 45 degrees and

mapping B corresponds to rotating a shape 60 degrees.

At this point in our story, Phase 3 will have discovered these transformations,

but we will not have related them to each other. At this stage, our system won’t

recognize that mapping B has anything more to do with mapping A than it would

to a mapping that essentially translates the image up 20 pixels and right 35 pixels.

Discovering relations among these mappings is addressed in Phase 4.

2.2.4 Phases 4 and 5: Parameterizing Mappings

The next 2 steps, Phases 4 and 5, are entirely conceptual, but are provided in

outline to complete the story of how we might develop rich relational representations

from raw feature sets. Full implementations of these ideas are left as future work.

Given a set of mappings and a set of feature-sets over which these mappings
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operate (such as are provided from Phase 3), Phase 4 attempts to discover relations

among these mappings and parameterize the mappings if possible. When applied to

our grid example, Phase 4 should give us a generalized theory of rotation, translation,

and scale, with some idea of a rotation angle.

Phase 4 randomly applies the set of mappings to items in the set of feature-sets

and constructs a graph where the edges are mapping names and the nodes are names

of feature-sets. An edge is drawn from node a to node b (tagged with mapping name

x) if mapping x applied to feature-set a produces feature-set b.

Given this graph, we might notice that applying mapping x to a feature-set

usually produces the same result as applying mapping y then z to a feature-set.

We might also notice that this graph is isomorphic to another graph with com-

pletely different nodes and edges. For example, we might have a graph concerning

transformations on apples. In this “apple” graph, we can add or remove apples.

So applying the add5apples to have20apples produces have25apples. Then apply-

ing the add5apples again to have25apples produces have30apples. Likewise, apply-

ing add10apples to have20apples produces have30apples. From other examples like

this, we conclude that applying add5apples twice is roughly the same as applying

add10apples once.

An example of the graphs that we come up by applying these mappings is shown

in Figure 2.12. Note that these graphs are isomorphic. The next step is to extract out

the commonalities of these graphs, and parameterize the differences. The parameters

that can fill these differences form an equivalence class. We then Ontolize these

parameters. That is, the parameters that can fill a slot is a set of feature-sets, we can
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feed these feature-sets into Ontol to more concisely characterize them, find patterns

on them, and do inference with them. This ontology of the parameters is now an

intuitive theory of integers.

have20app les

have25app les

add5apples

have30app les

add10apples

add5apples

have35app les

add10apples

add5apples

have40app les

add10apples

add5apples

have45app les

add10apples

add5apples

(a) Apples

1

2

A

3

B

A

4

B

A

5

B

A

6

B

A

(b) Angles

Fig. 2.12. The graphs for Apples and Angles.

For Phase 4, we can use the same “extract and parameterize” algorithm that we

used in Phase 2. In Phase 2, we can also use intensions (or a combo of intensions

and extensions) to characterize the parameters. Thus we build an ontology of these

parameters.

Finally, Phase 5 is the MacGlashan transform, which represents relational struc-

tures as feature-sets. So we can encode structures such as those in Figure 2.12 as



59

feature-sets, then use Ontol to find patterns, do inference, and search on these.

These ideas are further discussed in Chapter 6.



Chapter 3

ONTOL: A FEATURE-SET ONTOLOGY

To build our bridge from raw sensors to a rich theory of the world, we must first

discover relations among our features. To do so, we build a conceptual structure. In

this chapter we describe Ontol, a system that takes in a collection of feature-sets and

builds and uses an ontology to characterize these feature-sets. An overview of Ontol is

given in Subsection 2.2.1. Once an ontology is built, the model is used for prediction

and characterization. This is done through a number of parse and truth-derivation

operators on the ontology, which are described in Section 3.4.

3.1 Related Work

Here we review related work on autonomous ontology formation and unsuper-

vised learning from feature-sets, as well as work on representing and using ontologies

to do inference on feature-sets.

A popular framework for learning with and using feature-sets is Bayesian Net-

60
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works (described in (Pearl 1985)), in which every node has a conditional probability

table for all the 2n possibilities for each of its n neighbors (assuming binary variables).

A problem with using a Bayesian Network framework is that, in the standard ver-

sion, the size of a node’s conditional probability table is exponential in the number of

other nodes it’s connected to. I want to allow that some nodes might be connected to

thousands of other nodes. Thus, a generic Bayesian framework is impractical. Fur-

thermore, building Bayesian networks (including finding hidden nodes) is expensive.

We want to be able to handle massive amounts of data of high dimensionality. In-

spired by neurological models, we’re only interested in a special subset of Bayesian

networks that we hypothesize will be useful for characterizing real-world data, and

we can leverage properties of these networks to allow for efficient representation and

computation with them. Effectively both Bayesian networks and Ontol have the same

expressive power in a “Turing-complete” sense, that of propositional logic. But, by

changing the hypothesis space, we can bias our search so that we can more easily

find structures that more naturally fit real-world systems, as argued in (Hawkins &

Blakeslee 2004).

This work is inspired by and loosely based on models of the neocortex. In par-

ticular, this work borrows heavily from the representation of (Riesenhuber & Poggio

1999) and (Hawkins & Blakeslee 2004), and the inference models of (Hawkins &

Blakeslee 2004) and (George & Hawkins 2009). Though these models provide insight

into how feature-set ontologies can be represented and used, neither of these models

provide a satisfactory account of how the ontologies are learned from raw data in

an entirely autonomous fashion. Though George and Hawkins give an algorithm for

learning weights for a cortical region given a structure, this structure must be hand-

built. Likewise, HMax (Riesenhuber & Poggio 1999) gives no learning algorithm for
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learning the structure of its model.

HMax (Riesenhuber & Poggio 1999) demonstrates that, by using 2 types of net-

work nodes, essentially AND nodes and OR nodes, visual concepts can be represented

and recognized invariantly of rotation and other transformations. Essentially, HMax

represents a shape as a bag of parts, as the invariant “dog” shape is represented in

Figure 2.8, and uses the same principles that we use to represent shapes with in-

variance to transforms, as we describe in Subsection 2.2.1. That is, ORs allow us to

represent invariance and ANDs allow for efficient encoding. HMax also demonstrates

that, with part overlap, it’s difficult to find a shape that has all the parts in our

bag-of-parts representation for a shape, but is not the shape itself.

Hierarchical Temporal Memories or HTMs ((Hawkins & Blakeslee 2004), (George

& Hawkins 2009)) go further and show how this representation can be used for not

only bottom-up recognition, but also top-down prediction, which Ontol uses. There

are minor differences in the truth-derivation algorithms of Ontol and HTM. For ex-

ample, HTM seeks to model human cognition, whereas Ontol seeks to attain an

information-theoretic ideal. This constrains HTM from an Artificial Intelligence per-

spective since some constraints, such as the inability to memorize all of one’s sensor

stream, don’t necessarily apply to computers. Ontol also allows for hypothetical

branching, where the truth-state of the ontology can be stored, a “hypothetical situ-

ation” postulated and its implications tested before “resetting” the ontology back to

its original state.

The main difference between Ontol and HTMs is that there is currently no algo-

rithm for creating the structure of these memory systems. HTMs require that a user

provides this structure. Once a structure is provided, current HTM algorithms can
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learn the parameters (e.g., link weights) for that structure from data. This is a prob-

lem that this dissertation addresses through the processes of chunking and merging,

which are outlined in Subsection 2.2.1 and detailed in this chapter.

3.1.1 Chunking

Many of the papers that give a computational account of concept formation do

so in terms of clustering (Thompson & Langley 1991), (Cohen 1998), (Rosenstein &

Cohen 1999), (Iba & Langley 2001). Clustering is perhaps the most common form

of unsupervised concept formation. For an overview of some of these algorithms, see

(Fasulo 1999). Although clustering is useful for some domains, and many of the prin-

ciples of clustering can be applied to concept formation in general, these techniques

alone are inadequate for formation of “analogical” concepts such as the RISK “Bor-

der Escalation” described in Subsection 7.1.3, because, to begin with, it’s difficult to

represent even a single instance of a Border Escalation in a form that a clustering

algorithm could use (such as a vector). Second, clustering algorithms usually require

the data to be segmented into instances. Another drawback to much of the clustering

work is that each item belongs in only one cluster. Hierarchical Clustering (such as

(Olson 1995)) allows that an item may be in nested clusters, but usually allows the

item to have only 1 parent. Our chunking algorithm, “The Cruncher”, uses multi-

ple inheritance, which allows it to overcome obstacles faced by strictly hierarchical

classification systems such as hierarchical clustering and decision trees. For example,

in Figure 3.7, The Cruncher describes the Penguin (which has attributes in common

with Birds and Fish) as both a “bird” and an “aquatic” creature. Hierarchical clus-

tering would force the Penguin to be in only one of these classes. Fuzzy Clustering
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(Hoppner et al. 1999) has been proposed to address this issue, but these techniques

generally require a distance metric to be provided. We take a different approach that

doesn’t require a user to provide a domain specific distance metric. Kanerva (Kanerva

1988) uses an exemplar model to represent and retrieve large bit-vectors, but doesn’t

build a concept hierarchy.

There has also been work on Ontology Formation (for example, see (Gruber

1993)), but much of this work is aimed at knowledge engineering, where a human’s

help is required to assist the ontology formation, or is applicable to a narrow domain.

The Cruncher is completely unsupervised in contrast, and counts domain indepen-

dence as one of its strong points. Many of the ontology generating systems such

as OntoLearn (Velardi, Fabriani, & Missikoff 2001), and OntoBuilder (Gal, Modica,

& Jamil 2004) are geared specifically for extracting ontologies from written natu-

ral language text (employing engineering techniques such as text parsers with hand

designed rules) or forms filled by a human user. The Cruncher also allows for ex-

ceptions, which further sets it apart from most of the work in this community. The

Cruncher’s exceptions allow for better compression, and, for the UCI Zoo Database,

allow for classifications that correspond to the human-developed classification. For

example, the Platypus is described as an egg laying mammal, even though mammals

are defined as not laying eggs.

The field of Formal Concept Analysis provides methods for producing Concept

Lattices, which form an ontology with multiple inheritance. The input to these al-

gorithms is a matrix where the rows are items and the columns are features of those

items. These algorithms then produce a concept lattice where upward links repre-

sent feature inheritance. The main aspects that set The Cruncher apart from this
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work are: first due to the rigidity of Formal Concept Analysis, exceptions are not

allowed as they are for The Cruncher, and second, MDL is not a driving factor in

producing the concept lattices. Furthermore, in (Pickett & Oates 2005) we show that

The Cruncher can provide better compression than standard Concept Lattice layout

algorithms, such as that described in (Cole 2001). For an overview of the field of

Formal Concept Analysis see (Ganter & Wille 1999).

The idea for The Cruncher grew out of “PolicyBlocks”, an algorithm for finding

useful macro-actions in Reinforcement Learning (Pickett and Barto (Pickett & Barto

2002)). The Cruncher extends PolicyBlocks by framing it in terms of ontology for-

mation and MDL, and by adding exceptions and the ability to create multiple levels

of concepts.

Grammatical Inference There has been substantial work on chunking in

grammatical inference. For a survey of some of this work, see (Gobet et al. 2001).

Most of these algorithms search for “chunks” which are n-grams that allow us to con-

cisely express the strings (Servan-schreiber & Anderson 1990). For example, ADIOS

(Edelman et al. 2004) builds a tree of chunks, but this work doesn’t have a metric for

choosing good chunks grounded in information theory. The MDLChunker algorithm

(Robinet & Lemaire 2009) uses an energy function grounded in information theory,

like our Equation 3.1, but is also geared toward sequential data. None of these algo-

rithms work by explicitly finding intersections among existing chunks. Furthermore,

most depend on the sequential information, that we are trying to discover in the first

place. Therefore, none of these algorithms would be applicable to undifferentiated

sensor data, such as our example in Figure 2.4. Additionally, these algorithms con-

struct hierarchies, not heterarchies, and don’t allow for exceptions, as we do. The
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structures created by these algorithms are grammars, and have no model for inference

using the structures akin to our inference algorithm in Subsection 3.4, which is based

on the cortical models of (Hawkins & Blakeslee 2004) and (Riesenhuber & Poggio

1999).

There has also been work on finding chunks by segmenting strings, such as

(Batchelder 2002), (Perruchet & Vintner 1998), and (Armstrong & Oates 2007), but

these also suffer from the constraint that they depend on sequential knowledge.

3.1.2 Merging

Merging is the process of finding equivalence classes by finding sets of features

that occur in similar contexts as each other, but rarely occur with each other. We

call these equivalence classes “OR”s, and they are necessary for our representation

model.

Less work has been done on merging than on chunking. Nearly all of this work

has been for grammars or minimizing finite state automata. Generally, these meth-

ods merge states or grammar rules, which decreases description length at a cost of

accuracy. This is the basic approach taken by Bayesian Model Merging (Stolcke &

Omohundro 1994). We also take this general approach, but our approach is different

in that it looks for features that tend to share equivalent contexts.
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3.2 Representation

What is laid down, ordered, factual, is never enough to embrace the

whole truth.

–Boris Pasternak (1890-1960)

Representing and learning invariant concepts is an essential component of in-

telligence. For example, we can learn to recognize words in our native language

largely invariant of the words’ pitch, speed, or accent. People have shown that we

can represent concepts that are invariant to many transformations (e.g., translation,

rotation, and scale for vision) using layers of intensions and extensions (Hawkins &

Blakeslee 2004), (Riesenhuber & Poggio 1999), but none have good story for how

these structures are built: both include such a degree of human knowledge that their

construction algorithms aren’t applicable to undifferentiated sensor data.

We want a representation framework that’s simple (as argued in our “Desiderata”

in Subsection 1.2.1). Yet, if this is to be our core representation framework for a

system that’s able to plan, we would like our framework to be expressive enough to

represent propositional logic. At the same time, to constrain our learning process,

we want our representation to be a natural “fit” to the real world. As argued in

(Hawkins & Blakeslee 2004), the natural world naturally fits a hierarchical structure.

Our entire ontology is a set of feature-sets, where each set is designated an AND

node or an OR node (as done by HMax and HTMs and as shown in Figure 2.8).

Every node is given a unique name, and nodes may point to other nodes, excepting

that a node may not point to its ancestors. (That is, we don’t allow cycles.)
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Note that our entire ontology can be represented in a single text file, with one

node per line. For example a pair of lines from our ontology might look like this:

node121721: OR {node12132, Sensor1102, Sensor0021, node7382, NOT node73811}

node121728: AND {Sensor1712, Sensor0021, Sensor0021, NOT Sensor0002, Sensor2037}

This describes node121721 as an OR node that points to nodes node12132,

Sensor1102, Sensor0021, node7382, and node73811. This means that node121721

turns ON if any of nodes node12132, Sensor1102, Sensor0021, node7382 are ON

or node node7382 is OFF. Conversely, if the OR node node121721 is ON, then at

least one of its children are driven to be ON (except for node73811, which might be

driven to be OFF) to satisfy the OR property. (Nodes Sensor0021 and Sensor001102

happens to be a raw sensor node, but the name is for our convenience.) More details

of this process are given in Section 3.4.

The 2nd line describes node121728, an AND node the points to nodes Sensor1712,

Sensor0021, Sensor0002, and Sensor2037. If node121728 is ON, then these nodes

are all driven to be ON, except for node Sensor0002, which will be driven to be OFF,

since the link to it is inhibitory. Note that node121728 has 2 links to Sensor0021,

which means that if node121728 is ON, then Sensor0021 will be counted as ON twice

(i.e., with a value of 2).

The reason for this double link is to address the problem of conflicting inheri-

tance, where a node’s parents disagree on the value for a feature. For example, in

“The Nixon Diamond”, we know that Republicans are War Hawks, Quakers are not

War Hawks, and Richard Nixon is both a Quaker and a Republican. The question is

then whether Nixon is a War Hawk. Figure 3.1 shows how this is decided. Essentially,
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we add multiple links to the “War Hawk” node and count whether more inhibitory

or excitatory links are active.

Nixon

Quaker Republican

War  Hawk

(a) War Hawk is UN-
SPECIFIED

Nixon

Quaker Republican

War  Hawk

(b) War Hawk is ON

Nixon

Quaker Republican

War  Hawk

(c) War Hawk is OFF

Fig. 3.1. The Nixon Diamond. Inhibitory links are shown as arrows, and excita-
tory links are those with small circles at the end. By counting the number of active
links, we determine whether “War Hawk” is ON or OFF.

We allow that a feature may be missing, so we distinguish between absence of

evidence and evidence of absence. This allows us to “fill in” the missing data using

top-down reasoning, in a manner similar to (Hawkins & Blakeslee 2004).

3.3 An Energy Function for Ontologies and Parses

We provide an information theoretic function for evaluating ontology construc-

tion and parses using this ontology (Shannon 1948). In this sense, a “parse” is a small

set of truths from which the other truths in an ontology may be derived.

Theorem 1. Given a set of data D, and assuming a prediction-length prior on our

model length, if ontology Ω minimizes the energy function E (Ω) in Equation 3.1, then
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this ontology maximizes the probability of the model given the data. This equation is

E (Ω) = k |Ω| −
∑

i

max
Ri

(

log2 (P (Di|Ri,Ω)) + k
∑

r∈Ri

log2 P (r|Ω)
)

(3.1)

Also, given a fixed ontology Ω and datum Di, the most probable set of parses Ri,

are those that minimizes ER (Ri), where

ER (Ri) = − log2 (P (Di|Ri,Ω))− k
∑

r∈Ri

log2 P (r|Ω) (3.2)

Proof. Given a data set D, where Di is a set of binary features, we want to find

the most probable ontology Ω and set of parses R. That is, we want to find Ω

and R to maximize maximize P (ontology = Ω, parse = R|data = D). Here Ri is the

parse for datum Di, meaning that Ri is a set of binary features, which when stated

should give a high probability to Di. In this derivation, we’ll use the convention

that P (Ω) is shorthand for P (ontology = Ω), and similar shorthand for P (D) for

P (data = D), etc.. Using Bayes’s rule, we get that P (Ω, R|D) is proportional to

P (D|Ω, R)P (Ω, R). Since each datum Di ∈ D is parsed independently (by Ri), we

get

P (D|Ω, R) =
∏

i

P (Di|Ri,Ω)

Substituting this back in, and exploiting the fact that all the Ris are independent
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of each other, we want to find Ω and R to maximize

P (Ω, R|D) ∝ P (Ω, R)
∏

i

P (Di|Ri,Ω)

= P (Ω)P (R|Ω)
∏

i

P (Di|Ri,Ω)

= P (Ω)
∏

i

P (Ri|Ω)P (Di|Ri,Ω)

Given Ω and Di, we can independently find a Ri, so if we just want to maximize

Ω, we use

P (Ω|D) ∝ P (Ω)
∏

i

max
Ri

(P (Ri|Ω) (P (Di|Ri,Ω)))

Following Wolff (Wolff 2003), we assume a description length prior on Ω and R.

Furthermore, since Ri is encoded in terms of Ω, we can use a Huffman-like encoding

for the individual elements of Ri.

DL (Ri|Ω) =
∑

r∈Ri

DL (r|Ω)

=
∑

r∈Ri

−k log2 P (r|Ω)

Where k is a constant (usually 1) that converts between bits and probabilities. Like-

wise, the description length (DL) of Ω is given by k |Ω|. P (r) can be approximated by

its frequency in Ω, since part of the ontology is the frequency of each of its elements.

Substituting these description length priors for P (Ω) and P (Ri|Ω)

P (Ω|D) ∝ 2−k|Ω|
∏

i

max
Ri

(

P (Di|Ri,Ω) 2
k
∑

r∈Ri
log2 P (r|Ω)

)
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Taking log2 we yield

−k |Ω|+
∑

i

max
Ri

(

log2 (P (Di|Ri,Ω)) + k
∑

r∈Ri

log2 P (r|Ω)
)

Conversely, given data D, we want to find Ω to minimize E (Ω), where

E (Ω) = k |Ω| −
∑

i

max
Ri

(

log2 (P (Di|Ri,Ω)) + k
∑

r∈Ri

log2 P (r|Ω)
)

which is Equation 3.1.

It follows that, given a fixed ontology Ω and datum Di, we want to find the set

of parses Ri that minimizes ER (Ri), where

ER (Ri) = − log2 (P (Di|Ri,Ω))− k
∑

r∈Ri

log2 P (r|Ω)

3.3.1 Probability Calculation for Discrete Evidence

Equation 3.1 requires that we’re able to calculate the probability of a node M

given the values of its surrounding nodes as evidence E (as True or False). An

approximation is given by Theorem 2.

Theorem 2. If we’re given a node M in the ontology with evidence E, then an
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approximation to the probability that M is true is given by

P (M |E) ≈
(C (M) + 1)

∏

x∈E
C(x,M)+1
C(M)+2

(

(C (M) + 1)
∏

x∈E
C(x,M)+1
C(M)+2

)

+
(

(T − C (M) + 1)
∏

x∈E
C(x)−C(x,M)+1

T+2

)

where T is the total number of seen vectors, C is a function that returns the counts of

occurrences, such that C (x) is the number of times x occurred, and C (x,M) is the

number of times x and M occur together.

Proof. Applying Bayes’s rule, we get

P (M |E) =
P (M)P (E|M)

P (E)

=
P (M)P (E|M)

P (M)P (E|M) + P (∼ M)P (E| ∼ M)

If we assume a significant amount of independence among the evidence in E,

then this quantity becomes

P (M |E) ≈ P (M)
∏

x∈E P (x|M)

P (M)
∏

x∈E P (x|M) + P (∼ M)
∏

x∈E P (x| ∼ M)

If we assume a uniform prior on all our probabilities, then we can approximate

these probabilities using the counts by using the expected value of a β distribution.

Thus, for example, P (x|M) is approximated by C(x,M)+1
C(M)+2

. Substituting these quanti-

ties in the previous equation, we get
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P (M |E) ≈
(C(M)+1)

T+2

∏

x∈E
C(x,M)+1
C(M)+2

(

(C(M)+1)
T+2

∏

x∈E
C(x,M)+1
C(M)+2

)

+
(

(T−C(M)+1)
T+2

∏

x∈E
C(x)−C(x,M)+1

T+2

)

=
(C (M) + 1)

∏

x∈E
C(x,M)+1
C(M)+2

(

(C (M) + 1)
∏

x∈E
C(x,M)+1
C(M)+2

)

+
(

(T − C (M) + 1)
∏

x∈E
C(x)−C(x,M)+1

T+2

)

3.3.2 Probability Calculation Given Probabilities of Surrounding Ev-

idence

In the case where we don’t know the actual value of the surrounding evidence

for node M , but instead are given V , which is the probability estimates for the

surrounding evidence, we can estimate the probability of M given V using Theorem

3

Theorem 3. If V is the surrounding evidence (such that V (x) is our probability

estimate for x), and we assume independence among all M ’s surroundings, we get:

P (M |V ) = P (M)
∏

x∈E

(

P (x|M) V (x)

P (x)
+

(1− P (x|M)) (1− V (x))

1− P (x)

)

Proof. If we consider each of the 2|E| combinations of True/False for the elements of
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E, then we can expand our probability for M |V to be

P (M |V ) = P (M |x1, x2, x3, · · · , xn)P (x1, x2, x3, · · · , xn|V )

+ P (M |x̄1, x2, x3, · · · , xn)P (x̄1, x2, x3, · · · , xn|V )

+ P (M |x1, x̄2, x3, · · · , xn)P (x1, x̄2, x3, · · · , xn|V )

+ P (M |x̄1, x̄2, x3, · · · , xn)P (x̄1, x̄2, x3, · · · , xn|V )

+ P (M |x1, x2, x̄3, · · · , xn)P (x1, x2, x̄3, · · · , xn|V )

· · ·

+ P (M |x̄1, x̄2, x̄3, · · · , x̄n)P (x̄1, x̄2, x̄3, · · · , x̄n|V )

Where

P (M |x1, x2, x3, · · · , xn)P (x1, x2, x3, · · · , xn|V )

= P (M |x1, x2, x3, · · · , xn)V (x1) V (x2)V (x3) · · ·V (xn)

=
P (x1, x2, x3, · · · , xn|M)P (M)

P (x1, x2, x3, · · · , xn)
V (x1)V (x2) V (x3) · · ·V (xn)

= P (M)
P (x1|M)P (x2|M)P (x3|M) · · ·P (xn|M)

P (x1)P (x2)P (x3) · · ·P (xn)
V (x1) V (x2)V (x3) · · ·V (xn)

= P (M)
P (x1|M) V (x1)

P (x1)

P (x2|M) V (x2)

P (x2)

P (x3|M) V (x3)

P (x3)
· · · P (xn|M) V (xn)

P (xn)
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So our equation becomes:

P (M |V ) = P (M) (

P (x1|M) V (x1)

P (x1)

P (x2|M) V (x2)

P (x2)

P (x3|M) V (x3)

P (x3)
· · · P (xn|M) V (xn)

P (xn)

+
P (x̄1|M) V (x̄1)

P (x̄1)

P (x2|M) V (x2)

P (x2)

P (x3|M) V (x3)

P (x3)
· · · P (xn|M) V (xn)

P (xn)

+
P (x1|M) V (x1)

P (x1)

P (x̄2|M) V (x̄2)

P (x̄2)

P (x3|M) V (x3)

P (x3)
· · · P (xn|M) V (xn)

P (xn)

+
P (x̄1|M) V (x̄1)

P (x̄1)

P (x̄2|M) V (x̄2)

P (x̄2)

P (x3|M) V (x3)

P (x3)
· · · P (xn|M) V (xn)

P (xn)

+
P (x1|M) V (x1)

P (x1)

P (x2|M) V (x2)

P (x2)

P (x̄3|M) V (x̄3)

P (x̄3)
· · · P (xn|M) V (xn)

P (xn)

· · ·

+
P (x̄1|M) V (x̄1)

P (x̄1)

P (x̄2|M) V (x̄2)

P (x̄2)

P (x̄3|M) V (x̄3)

P (x̄3)
· · · P (x̄n|M) V (x̄n)

P (x̄n)

)

Which reduces to:

P (M |V ) = P (M)
n
∏

i=1

(

P (xi|M) V (xi)

P (xi)
+

P (x̄i|M) V (x̄i)

P (x̄i)

)

3.4 Parsing with An Ontology

Our parsing algorithm starts with an ontology and an initial truth setting. Re-

gardless of where the nodes are in the ontology, the nodes that are set to be true

or false are called raw sensor nodes. Parsing focuses on “explaining” the raw sensor
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nodes by stating truth values for other nodes.

Additionally, each node’s truth value is dependent on the values for its neighbors.

Each node is either ON, OFF, or UNSPECIFIED. Additionally, each node that isn’t

UNSPECIFIED is set to one of the values of either “EXPLAINED” or “FORCED”.

If a node is set to EXPLAINED, this means that its value is derivable from other

nodes in the ontology. FORCED means not EXPLAINED, as if the nodes value has

been set to be ON or OFF by a force external to the ontology. In principle, all the

truth settings for the nodes in an ontology can be derived from the set of nodes that

are FORCED. With this approach, we don’t need to cover the full Markov blanket

for a node. That is, we assume approximate independence among the parents of a

node, then we need only know that a node n is EXPLAINED (i.e., some parent p is

ON and P (n|P ) ≈ 1), but not which parent explains it. This is particularly useful if

a node has hundreds of parents.

Figure 3.2 shows an example parse and truth-derivation. Although all nodes

except node 11 are ON, the “parse” is only nodes 16 and 10, with the specification

that the OR node 16 is instantiated by node 14. For us, a parse is a small set of

truths from which the other truths in a network may be derived. The set of nodes 1 -

9 would also suffice as a parse, but is substantially larger, and therefore less preferred.

3.4.1 Optimal Parsing is NP-Hard

Here we prove that optimal parsing in NP-Hard, because The Set Covering Prob-

lem is reducible to The Parsing Problem. A parse Ri for an ontology Ω is a set of
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0 1 2 3 4 5 6 7 8 9

1 0 1 1 1 2 1 3

1 41 5

1 6

Fig. 3.2. An example parse and truth-assignment. Light nodes are ANDs and
dark nodes are ORs. Nodes with double boundaries are ON and the other nodes are
OFF or UNSPECIFIED (in which case they go to their default value, OFF). Raw
data nodes are shown as octagons. Nodes with dotted borders are nodes “in” the
parse. Here, nodes 1 - 9 are set to ON, which causes all nodes but node 11 to turn
ON. The “parse” for this situation is nodes 10 and 16 and the specification that node
16 is instantiated by node 14 (at a cost of 1 bit), which is represented by the dashed
line from node 16 to node 14.
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propositions, such that each proposition r ∈ Ri is either true or false. Every propo-

sition r ∈ Ri corresponds to a node in the ontology Ω (setting that node to true or

false), but nodes in Ω may be unspecified.

Given an ontology Ω, and a feature-set Di, we want to find the parse Ri that

maximizes

log2 (P (Di|Ri,Ω)) + k
∑

r∈Ri

log2 P (r|Ω) (3.3)

Note that log2 P (x) ≤ 0, so we’re really minimizing the magnitude of this function.

Theorem 4. Optimal parsing –finding Ri to maximize the expression in Equation

3.3– is NP-hard.

Proof. The Set Covering Problem

The Set Covering Problem is one Karp’s 21 original NP-complete problems (Karp

1972). Given a set of elements U , and a family S of subsets of U (where we assume

that every element in U occurs in at least one set in S), a covering set M is a subset

of S such that every element of U is contained in at least one of the sets in M. If this

is the case, we’ll say that M covers S. The decision problem is whether it’s possible

to construct a covering set such that |M| < k for some integer k.

The Set Covering Problem is reducible to The Parsing Problem

Given a particular set covering problem S and k, we can construct an equivalent

ontology Ω and feature-set Di such that it’s possible to cover S using fewer than k

subsets if and only if it’s possible to parse Di at a cost of higher than −k.

To do this construction, for every element u ∈ U we create a corresponding node
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u′ in Ω, and also include this node in Di and set its value to true. (These correspond

to the input nodes in Ω.) Then, for every set s ∈ S, we add a new node n to Ω and

set the probabilities such that for every element si ∈ s, we find its corresponding node

u′ in Ω. We set the probabilities such that P (u′|n) = 1 and P (u′) = 0 if none of its

parents are true. Finally, we set P (n) = .5 (so it takes 1 bit to specify the truth

value for these). Since the probability of all children of a node being true when that

node is true, and the cost of specifying that a node is true is 1, our cost is simply

the number of nodes we need to specify as true. Thus, our parsing task becomes the

task of finding an optimal parse in this construction.

One difference between the parsing task and the set covering task is that, in

the parsing task, we’re allowed to specify that individual data items are true or false

(though, in the minimal set covering problem, we’re not allowed to include individual

elements from U in M). However, allowing individual elements won’t help reduce

our cost in either case because for any element u, we can (at the same price) include

a set in M or a parent of u′ that already includes u or u′.

3.4.2 Our Energy Function Yields Sensible Parses

As a sanity test, I ran the following algorithm on an ontology Ω. I constructed all

3|Ω| possible parses, by choosing all combinations of nodes in Ω where each node was

set to either True, False, or Unspecified (i.e., not included in the parse). For each

potential parse R′, I evaluated E (R′) by converting the network into a full Bayesian

network and doing exact Bayesian inference (using an off-the-shelf Bayesian inference

engine) to compute the probabilities P (Di|R′).
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Fig. 3.3. An example AND network. Nodes a, c, and d are all set as raw data
nodes to ON. The best parse for this situation is y being set to ON.

For the ontology shown in Figure 3.3, our evidence includes a, c, and d (all set

to True)

The algorithm described above correctly concluded the best parse to be {y}.
Below are the scores for the 10 top scoring parses:

Parse Score

{y} 0.3750

{y, x} 0.2187

{a, d} 0.2180

{a, x} 0.2162

{a} 0.2146

Parse Score

{a, w} 0.2146

{c, y} 0.2127

{w} 0.2127

{y, z} 0.2115

{a, c} 0.2099

Though our energy function may be sensible, this technique is not. Searching

the power set of the items in Ω is exponential in |Ω|. Furthermore, exact inference

in Bayesian networks is NP-hard (Cooper 1990). Assuming P 6= NP , this yields a

runtime of at least O
(

2n
2
)

for the above described algorithm. Therefore, more prag-

matic algorithms will be necessary, especially if we plan on working with ontologies
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that have millions of nodes. We can exploit the lattice structure of the ontology, and

we can accept approximations both in inferences and in parses.

The following graphs are test cases. For each of these, I set the values for the

“raw inputs” (shown as octagonal nodes) and exhaustively searched over all the truth

setting combinations for the remaining nodes. The results are shown here. Nodes that

are ON have a double border. For each of these, the results match with what makes

intuitive sense. For example, networks nixonn, nixonnP, and nixonnW are our Nixon

Diamond examples from Section 3.2. In nixonn, node 0 (the “War Hawk” node) is at

its default value False. In nixonnP the node is set to False, and in nixonnW, it’s ON.

We did an exhaustive search over all the truth settings for a number of small

networks. In each case, the algorithm agreed with what we wanted the truth setting

to be. For example, we ran the “Nixon Diamond” example from Figure 3.1. In Figure

3.4, the top node “Nixon” is set as ON. A node is displayed as ON if it has a double

border. A node is shown as FORCED if its border is dotted. An octagonal node is

an input node (where the value has been specified externally to be ON or OFF).

A sampling of the networks we tested is below.

0 1

2 3

0

1 2

0 1 2

3

0 1 2

3 4
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(b) War Hawk
is ON
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(c) War Hawk
is OFF

Fig. 3.4. How our representation handles The Nixon Diamond. Inhibitory
links are shown as arrows, and excitatory links are those with small circles at the end.
By counting the number of active links, we determine whether “War Hawk” is ON or
OFF.
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3.4.3 The Parsing Algorithm

Given an ontology Ω and a set of “input” nodes n for which we’re told the

truth settings (usually raw sensor nodes), we find a truth setting by hillclimbing (or

“hill-descending”, technically) on Equation 3.2. That is, we randomly initialize each

non-input node to ON or OFF, then we switch these values and hillclimb by choosing

the configuration that minimizes Equation 3.2. After a specified number of random

restarts, we return the configuration that produced the lowest value for Equation 3.2.

Given a set of truth-settings, we find the “parse” (a subset of the truth-settings

from which the truth-settings for all the remaining nodes can be derived) by evaluating

whether each node is “FORCED” or “EXPLAINED”. This is done locally. For each

node, we compute whether the node’s parents cumulatively want the node to be

ON or OFF (by counting the number of excitatory minus inhibitory links from the

ON parents). If a node is ON, but its parents wish it to be OFF (i.e., it has a

non-positive number of excitatory links), then that node is FORCED. Likewise, if a

node’s parents wish it to be ON and the node is set to OFF, then that node is also

FORCED. Otherwise the node is EXPLAINED. Our parse is the set of nodes that

are FORCED.

Given enough restarts, this algorithm will find the optimal parse (i.e., the parse
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that minimizes our energy function) because it’s possible (though very unlikely) that

a restart will begin with the optimal parse. Since there are 2 truth settings (ON and

OFF) for each node, this yields 2n possible parses, where n is the number of nodes.

At least one of these parses minimizes our energy function, so on average, we’d expect

to the optimal parse (with no hillclimbing) in O (2n) restarts.

To evaluate this algorithm, we ran our parsing algorithm on the test networks

from Subsection 3.4.2. For each of these, we got the same parses that we get by

doing exhaustive search. This parsing algorithm is part of the semi-supervised learn-

ing algorithm described in Section 3.6, which we use to evaluate the utility of this

algorithm as part of a larger system.

3.5 Building An Ontology

To start, the ontology building system uses the energy function in Equation

3.1 to decide what ontology is best for a data set. The energy function is based on

principles of probability theory and information theory (Shannon 1948), but basically

can be thought of as a variant of Ockham’s Razor, where we try to find the ontology

that helps us express the input data using the fewest bits.

AND nodes are formed by chunking, which creates nodes for large and frequently

occurring feature-sets. For example, if we see the set A, B, C, D often, then we can

create a new node M that is shorthand for this sequence. We can use M to compress

the set A, B, C, D, E, F down to the set M, E, F.

OR nodes are formed by merging. If 2 or more nodes are interchangeable with
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respect to their predictive power for other features, then we merge these nodes, thus

forming an equivalence class. A new OR node is created which represents the dis-

junction of the nodes in this set. For example, if we often see A, C, ... and B, C, ...

(but rarely A, B, C, ...), then we might create a new node N which is true if A OR B

are true. Then we can represent the set A, C and B, C both as N, C, which we can

then chunk (since there are 2 of them) as L. So the set A, C, E gets represented as

L, E. Note that merging decreases the accuracy of the ontology, but allows for extra

chunks that reduce the ontology’s description length. Merging also helps generalize

concepts.

In searching for both ANDs and ORs, we exploit the property that patterns

that are useful for compression tend to be those that are frequent. If a pattern is

found n times, then these occurrences are n places where this pattern can be used to

characterize the data. This principle —that the most useful patterns are the most

frequent— works in our favor because patterns that are frequent are also easier to

find.

3.5.1 Chunking

The Cruncher, first described in (Pickett & Oates 2005), is a simple representa-

tion framework and algorithm based on minimum description length for automatically

forming an ontology of concepts from attribute-value data sets. Although unsuper-

vised, when The Cruncher is applied to the UCI Zoo Database (Blake & Merz 1998),

it produces a nearly zoologically accurate categorization. Like PolicyBlocks, The

Cruncher finds useful macro-actions in Reinforcement Learning. The Cruncher can

also learn models from uninterpreted sensor data. In the same paper, we also discuss
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advantages The Cruncher has over concept lattices and hierarchical clustering.

Given a collection of sets of attribute-value pairs, where each attribute’s value is

from a finite alphabet, The Cruncher produces a concept ontology which uses inheri-

tance to compress the collection of attribute sets. One can “flatten” this ontology by

computing the inheritance of every node in it, and this flattened ontology will con-

tain the original collection of attribute sets. The Cruncher uses a greedy approach

for reducing the description length of the ontology (which is initially just the collec-

tion of attribute sets). The description length is defined as the number of links in

the ontology, be they “is-a” or “has-a” links, where an “is-a” link designates that

one node inherits from another, and a “has-a” link specifies an attribute that a node

has and that attribute’s value. (Whether the number of nodes was also included

in the description length did not significantly affect our results partly because this

number usually closely corresponds with the number of links.) The Cruncher gener-

ates candidate concepts by finding the “intersections” of subsets of the current items

in the ontology. These candidates are then evaluated by determining the reduction

in description length if each were to be adopted as concepts in the ontology. If no

candidate reduces the description length, then The Cruncher halts. If a candidate

is selected, then it is added to the ontology, and all other concepts in the ontology

inherit from it if it reduces their description length. If there is a contradiction in the

value assigned to an attribute by the nodes from which a concept inherits, that term

is simply discarded. Furthermore, if a concept has an attribute, but the node from

which it inherits has a different value for that attribute, then the concept states what

its value is for that attribute. Thus, exceptions are allowed. See Table 3.1 for details

of the algorithm.
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Algorithm The basic Cruncher algorithm is shown in Table 3.1. Essentially,

this searches for intersections among existing nodes and proposes these as candidates

for new concepts. Each candidate is evaluated by how much it would compress the

ontology, then the best candidate is selected and added to the nodes, and the process

is repeated until no candidates are found that further reduce the description length

of the ontology.

The runtime of this algorithm depends on whether one generates all possible

candidate concepts, which, theoretically, can be exponential in the number of sets

of original attribute pairs. In practice, one can successfully generate ontologies by

randomly generating only a subset of these candidates, thus yielding a polynomial

time algorithm. There is also an incremental version of this algorithm which works by

inserting one new concept at a time, and generating candidates by intersecting that

node with each of the other concepts in the ontology. The top candidate is selected

(or none if no candidate yields a decrease in description length), then this candidate

is inserted into the ontology following the same procedure.

In practice, we needed to randomize the mergeAll function because to search

all candidates exhaustively for large datasets required too much time and memory.

Instead, we randomly chose nodes, then computed the intersections of these nodes’

children. We call this algorithm “basicCrunch”.

We tested several modifications of the basicCrunch algorithm. One variant,

which we call “salienceCrunch”, deals with the idea of “salience” or “moderate nov-

elty”. When choosing nodes from which to find intersections, a simple search strategy

instead of uniform random selection would be to decrease the probability of selecting

a node in proportion to the number of times it has already been selected. Inversely,
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Table 3.1. The Cruncher algorithm.

// Returns an ontology that compactly expresses S
Cruncher(S) (where S is a set of attribute-value sets)

let B be a set of ConceptNodes such that S
foreach attribute-value A in S there is a corresponding ConceptNode c in B

such that A ∈ c.hasA and c.isA = ∅.
while we are still decreasing the description length of B

candidates = mergeAll(B)
compute score(B, candidate) foreach element in candidates

let best be the highest scoring candidate
if score(B, best) > 0 then let B = replaceBest(B, best) + best

return B

// Returns all possible intersections of subsets of B
mergeAll(B)

let Closed and New be new empty sets of attribute-value sets
let Open = B
while |Open| ≥ 0

foreach pair of attribute-value sets F1, F2 ∈ Open
if F1 ∩ F2 /∈ New add F1 ∩ F2 to New

foreach F ∈ Open
remove F from Open
if F /∈ Closed add F to Closed

foreach F ∈ New
remove F from New
if F /∈ Closed add F to Open

return Closed

// The decrease in description if candidate is used as a concept
score(B, candidate) =

∑

n∈B max (0, nodeScore(n, candidate)) - |candidate.hasA|
replaceBest(B, best) foreach n ∈ B if nodeScore(n,best) > 0 then replace(n, best)

// Returns the decrease in description length if n were to inherit from candidate
nodeScore(n, best)

return the decrease in the description length for n and n after replace(n, best)

// Make n inherit from best
replace(n, best)

let flat be the flattened value of n
foreach a ∈ n.hasA ∩ best.hasA remove a from n.hasA
foreach a ∈ best.hasA such that ∃b ∈ n where attributes of a and b match, but the values disagree

add a to n if it’s not there already
foreach a ∈ best.hasA but a /∈ flat

add b to n where b’s attribute is the same as a’s but b’s value = ignore
(During flattening the ignore value causes the inherited attribute-value to be discarded.)
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Fig. 3.5. The “salience” mechanism in action. The x axis is the iteration
number (so at x = 1, we’re creating the 1st new chunk). The y axis is the concept
number, with the newest concepts at the top. The grey value is the salience score
for each node at the start of a particular round. The 16 black values at the bottom
are the sensor nodes, which have no children (and therefore, nothing to “explain”),
so the salience for these is 0.

we want to increase this probability in proportion to the amount of description length

we expect we might gain from crunching it. This way, we pay “attention” to new

nodes or nodes we haven’t looked into before, or nodes that might have a lot left to

crunch away.

To implement this idea, each node had an integer p keeping count of the number

of times it was picked, it also had an integer u representing the number of children

it had (i.e., the number of “unexplained” children it had). Then a node’s “salience

value”, directly proportional to the probability of it being chosen, was u
1+p

. Figure

3.5 shows this mechanism in action during a build of an ontology. There are 2 ways

a node can lose salience: it can be “explained” or it can lose salience because we’ve

fruitlessly tried explaining it too many times.
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Table 3.2. Comparison of different crunching algorithms. The Energy Score
and Computational Cost are shown for 3 different crunching variations. The 95%
confidence interval is shown for each value.

Algorithm Avg. Energy Score Avg. Cost

basicCrunch 2605.01±12.02 4208.27±134.25
salienceCrunch 2580.30±06.35 4701.34±114.58
parentCrunch 2528.06±10.31 4121.94±148.63

Another variant is called “parentCrunch”, which constrains its search for inter-

section by picking a node, then finding the intersection of 2 of the node’s parents.

This intersection is guaranteed to be non-empty (because the node itself will be in

it). This turned out to be a useful approach in practice.

A comparison of these 3 algorithms: basicCrunch, salienceCrunch, and par-

entCrunch is shown in Figure 3.6. Since these algorithms are randomized, we can

vary the number of candidates for each round. The number of candidates evaluated

is the x axis, and the y axis is the size of the resulting ontology for the UCI Zoo

dataset. We want lots of compression, so a lower score is better. As shown in Table

3.2, parentCrunch did the best, having the best average amount of compression for a

fixed amount of computation. We also tried variants of hillclimbing, where we eval-

uated modifications of promising candidate chunks, but the computation involved in

these evaluations was usually not worth the gains compared to trying entirely new

candidate chunks. We also tried variants of all these tricks, but nothing turned out to

be significantly better than parentCrunch, so we use this as our crunching algorithm.

Experiments To test the general applicability of The Cruncher, we chose a

diverse set of domains to which we applied our algorithm. For example, the UCI
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Fig. 3.6. A comparison of the best 3 search strategies. Each point is a complete
run of the algorithm on the UCI Zoo dataset. The x axis is the total amount of
computation time used (in terms of the number of candidate nodes evaluated), and
the y axis is the description length of the resulting ontology. For this plot, Parent
Crunch has the best computation to compression ratio, since it produced the best
compressed ontology at a low computational cost.
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Zoo Database is useful for gaining insight about The Cruncher’s ontologies. We show

the compression that can be achieved using The Cruncher on several UCI datasets

(Blake & Merz 1998) compared to using a standard compression algorithm alone (we

use Lempel-Ziv (Ziv & Lempel 1977)).

We also apply The Cruncher to reinforcement learning to create an algorithm

called PolicyBlocks. This algorithm demonstrates the use of The Cruncher on do-

mains other than classification or compression tasks. In these Reinforcement Learning

domains, there is a definite performance measure (cumulative reward).

Compression Performance of The Cruncher We ran The Cruncher

on several datasets from the UCI machine learning repository. For example, the

ontology that was created by The Cruncher for the UCI “zoo” dataset is shown

in Figure 3.7. An interesting outcome is that the animals are arranged according

to their classification even though this classification data was never provided. For

example, there is almost a one-to-one correspondence to the animals that inherit

from the black node in the lower right and the class Mammal. (The Tuatara and the

Tortoise are the only exceptions.) Birds, Fish, and Invertebrates are likewise grouped

together. The utility of allowing exceptions is demonstrated by the Platypus, which is

classified as an egg-laying mammal (even though mammals are asserted as not laying

eggs). The utility of having multiple inheritance is demonstrated by the case of the

Penguin, which shares traits with both aquatic life and birds. In Section 3.6, we show

how Ontologies created from unlabeled data can be used to create a semi-supervised

learning algorithm that’s able to learn categories from a handful of positive training

instances.
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Fig. 3.7. The automatically created zoo ontology. Arrows represent inheritance,
and the attributes and their values are listed in the nodes. Grey nodes are the original
concepts in the database, and black nodes were created by The Cruncher. Mammals
are grouped in the lower right, fish in the lower left, and the other three major
clusters, from left to right, are, for the most part, reptiles/amphibians, birds, and
invertebrates. Note, the multiply inheriting Penguin in the upper left. The class of
birds is divided just for the Penguin, and the Penguin shares traits with the aquatic
animals (“not airborne”, “aquatic”, “predator”).
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Table 3.3 shows the results of compressing the text files for various datasets using

the Lempel-Ziv (LZ) compression algorithm (Ziv & Lempel 1977) alone compared to

compressing the ontology generated by The Cruncher for the datasets. Since we’re

only chunking, both of these methods are lossless. For the LZ+Cruncher algorithm,

we first crunched the dataset, then wrote the feature-sets of the crunched ontology

to a text file, then compressed that file with LZ compression. The compression using

The Cruncher was significantly better for every dataset we tested. For example,

the “connect-4” dataset compressed to about quarter of its size that LZ alone could

compress it to. This is because LZ compression is specific to text files, and must

keep track of things like the sequence of the file. The Cruncher, on the other hand,

is for feature-set data, and so can exploit properties that are specific to feature-sets

(that feature-sets are unordered, for example). In this case, The Cruncher is able to

recover the original text files, because the features in the original text file were sorted

alphabetically. In the case where these features aren’t sorted, if there are n features,

we would need an extra 1
8
log2 (n!) bytes to specify the ordering. The number of

features in our files never exceeded 100, so at most this would be 1
8
log2 (100!) < 66

extra bytes per text file. Using The Cruncher alone has the disadvantage that the

output is written to a text file, so The Cruncher doesn’t exploit the properties for

text compression, such as making use of non-printable characters or compressing the

feature names themselves.

PolicyBlocks: Creating Useful Macro-actions In Pickett and Barto

(Pickett & Barto 2002), it was demonstrated that for policies in a Markov Decision

Process, certain concepts, which are effectively those created in the first level of

abstraction in The Cruncher, can be used as useful macro-actions. These macro-
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Table 3.3. Compression using The Cruncher. Various UCI datasets are shown
being compressed using the Lempel-Ziv compression algorithm on the raw data set
vs. the Lempel-Ziv algorithm compressing the ontology created by The Cruncher. In
all cases, The Cruncher helped to further compress the data compared to just LZ
alone. The size for each file is given along with the percentage of the original size.

Dataset Uncompressed Cruncher LZ LZ+Cruncher

connect-4 1,066,126 100% 55,315 5.19% 46,525 4.36% 11,283 1.06%
house-votes-84 104,611 100% 13,935 13.32% 6,441 6.16% 2,907 2.78%
kr-vs-kp 604,073 100% 35,421 5.86% 31,495 5.21% 6,747 1.12%
mushroom 1,494,117 100% 47,589 3.19% 32,846 2.20% 10,004 0.67%
nursery 392,027 100% 38,570 9.84% 11,351 2.90% 7,257 1.85%
SPECT 95,363 100% 11,346 11.90% 6,590 6.91% 2,417 2.53%
tic-tac-toe 199,291 100% 35,035 17.58% 9,987 5.01% 6,855 3.44%
zoo 29,427 100% 3,125 10.62% 1,353 4.60% 736 2.50%

actions outperform hand-chosen macro-actions such as getting to the “doorways” of

the rooms in a grid-world. We started with a 20 by 20 grid-world structure (see

Figure 3.8), and produced full policies leading to each of 20 randomly selected goal

states. These policies are represented as a collection of 400 attribute-values, where

the attributes are each of the 400 states, and the values are one of up, down, left, and

right.

To illustrate the behavior of PolicyBlocks, we ran it on an 18 by 18 grid-world

task. We then ran PolicyBlocks on a larger hydroelectric reservoir task, which is

an abstraction of the task described by (Little 1955). For each task, we created 20

sample problems by randomly setting the reward structure (details below). We used

policy iteration (with deterministic tie breaking) on these 20 problems to obtain a set

of 20 sample policies. The discount factor, γ, was set always to .9.

Given a set of sample solutions, we found options according to PolicyBlocks and

the SKILLS algorithm from (Thrun & Schwartz 1995), as well as the Reuse option
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Fig. 3.8. A macro-action ontology. On the left is a macro-action generated by
applying The Cruncher to a set of policies on a grid-world. The structure of the
ontology is shown on the right. Each grey node corresponds to a full policy over the
grid-world. Each black node is a sub-policy, or macro-action, that was produced by
The Cruncher. For example, the macro-action encoded by the bottommost node in
this ontology is that shown in the grid-world on the left. The arrows are “is-a” links,
so every full policy can be thought of as the composition of all the sub-policies from
which it inherits (in addition to the grey node’s own modifications). Thus, each black
node can be thought of as a “building block” for a full policy. (This is the origin of
the term “PolicyBlocks”).

from (Bernstein 1999). All option sets were augmented with the primitive actions.

We compared the performance of Q-learning with these options sets with Q-learning

using only primitive actions. For the grid-world, we also constructed a set of options

by hand that we thought would be useful. These options had the goal of exiting a

room by the north, south, east, or west faces (if such an exit existed). For the reservoir

problem, it was not obvious to us what might be useful “hand chosen” options, so

there is no comparison to these.

Using PolicyBlocks and SKILLS, we found the top 1, 2, 3, 4, and 5 options.

Bernstein’s Reuse algorithm allows for only one option, and has no parameters. In

addition to number of options, SKILLS has the parameter η, which weights the rel-

ative importance of description length to performance loss. In general, a larger value
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of η results in larger options. We set this parameter to .5, 1, and 2. For all of our

comparisons, we set both the step size, α, and exploration rate, ǫ, to .01, .05, or .1.

Initially each Q-value was set to 1. We evaluated the performance of these option sets

by reporting the average accumulated reward over 100 new tasks for the grid-world

and 10 new tasks for the reservoir domain.

Bernstein’s Reuse option is a stochastic policy defined over all states (i.e., I = S).

Given a set of solutions L to k Markov decision processes, this algorithm generates a

set of k stochastic policies SP where SPi (aj |s) = 1 if Li (s) = aj and SPi (aj |s) = 0

otherwise. The probability of taking action a in state s for the Reuse option is

1
k

∑k

i=1 SPi (a, s).

SKILLS is more complicated. This algorithm seeks to minimize an energy func-

tion E = PerformanceLoss+ ηDescriptionLength by gradient descent. Given a set

of optimal Q-values to a set of k problems, PerformanceLoss is the total decrease

in value (from optimal for the sample problems) caused by constraining the action

set to those defined by the option set for each state. That is, if there is an option

defined for a state, not all primitive actions are necessarily available for that state.

DescriptionLength is the sum of the size of the options plus k for each state s for

which no option is defined. To generate options, one must specify the size of the

option set and η. For each option, SKILLS then modifies usages (i.e., how useful an

option is for a particular sample problem), I, and π in order to minimize E.

The Grid-world Task

Our grid-world is an 18 by 18 grid (Figure 1) that is naturally divided into

rooms with doorways. The grid-world has four stochastic actions: up, down, left,
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Fig. 3.9. The grid-world with an example option. Each black box is an ob-
stacle, and each open box represents a state. The arrows indicate the actions for the
subpolicy. Lack of an arrow for a box implies that the subpolicy is not defined for
that state. Note that the option is discontiguous, and can be thought of as 8 separate
contiguous options. This subpolicy was found in 15 of the 20 sample solutions, and
has size 109 giving it a score of 109 · 15 = 1, 635, making it the top option found.
Other options found by PolicyBlocks followed this general pattern of taking the agent
through 1 or 2 rooms to the door.

right, which each have a .9 probability of success. If an action does not succeed,

the agent goes into one of the remaining legal directions each with equal probability.

A direction is illegal if an obstacle blocks its path. Additionally, the agent has a

deterministic “remain” action which allows the agent to stay in its current location.

Entering a goal state yields a reward of 10, while all other transitions yield a reward

of 0. While performing Q-learning, an agent is reset to a random location upon

reaching the goal state. Grid-world sample problems were made by choosing a goal

state randomly.
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Fig. 3.10. Option performance comparison for the grid-world. The x-axis is
time steps, and the y-axis is the cumulative reward averaged over 100 MDPs.

The Hydroelectric Reservoir Problem

A series of hydroelectric dams are positioned at distant points along a river.

Each dam sells electricity to a different city, and each has a reservoir to collect water

(Figure 3). Since there is no efficient electricity storage, the city uses and pays for

the electricity as soon as it is generated. The price of the electricity is proportional

to the city’s demand. In addition, due to economic differences, different cities pay

more or less for the same amount of electricity and for the same level of demand.

Each dam has a reservoir, and an agent must decide which dams to close or open,

thus producing electricity, letting the water flow down river, and lowering the level of

the reservoir. The agent’s goal is to maximize its total discounted profit. However,

there is no “goal state” as in the grid-world. The first reservoir in the sequence gets a

constant flow of water. This task is an abstraction of that described by Little (1955).
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Fig. 3.11. A sequence of hydroelectric reservoirs and dams. Each of the
4 dams provides power for a single city. Each city’s demand (and pay rate) varies
with time. The agent must choose which dams to keep closed or open to produce
electricity to sell immediately to its city. Opening a dam also sends some water to
the next reservoir downstream. There is assumed to be a steady flow of water into
the first reservoir.

In our specific example, there are 4 dams, each with a reservoir and a city. Each

city i has a variable demand level Di that can be either high, medium, or low, and

a fixed pay rate Pi ∈ (0, 1] that corresponds to the economic differences. Each dam

i has a reservoir water level Wi of either high, medium, or empty. At each decision

point, the agent can open or close each of the 4 dams, resulting in 24 = 16 actions.

If the agent opens a dam i, and it is not empty, a unit of electricity is produced,

and the water level is decreased (from high to medium, or from medium to empty).

The water flows down river, and the water level for the next reservoir Wi+1 will be

increased for the next decision point. The agent receives a pay from the city equal to

its pay rate Pi if demand Di is medium, twice the city’s pay rate if demand is high,
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and no pay at all if the demand is low. If the agent keeps the dam closed, nothing

happens. Between decision points, the reservoirs fill (from empty to medium, or from

medium to high) if the dam above them was opened (and water flowed). The top

dam always fills. If a dam is already at a high level, and more water is coming from

the dam above, the water is uselessly disposed of by flood prevention chutes, and

the levels stay the same. The cities also change their demand levels stochastically:

each has a .9 probability of remaining at the same level, and otherwise it transitions

to an adjacent level (e.g., low to medium). The agent has a discount rate of .9 for

each decision point. Since there are 3 levels for each dam, 3 levels for each the city’s

demand, and 4 cities and dams, there are 38 = 6, 561 different states.
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Fig. 3.12. Option performance comparison for the reservoir problem. The
x-axis is time steps, and the y-axis is the cumulative reward averaged over 10 MDPs.
The options generated by SKILLS faired best. A hair’s breadth below (nearly atop
SKILLS) is the Reuse option. PolicyBlocks performed better than using only primi-
tives, but not as well as the other option selection schemes.

To apply PolicyBlocks, we consider instances of this problem where the difference
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is the cities’ pay rates Pi which are drawn according to a uniform distribution. Thus,

the transition probabilities remain the same across problems, but the reward function

varies yielding different optimal policies. For our experiment, we generated 20 sample

problems where each Pi was chosen randomly uniformly from (0, 1]. We ran Q-learning

on this problem for 10 new problems.

Results
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Fig. 3.13. Effect of parameters for PolicyBlocks. The x-axis is time steps, and
the y-axis is the cumulative reward averaged over 100 grid-worlds. Using 2, 3, and
4 options has similar performance. Below these is using only the top option, and at
bottom is the performance of using the top 5 options.

Figure 2 shows results for the grid-world comparison. Over all the parameter

settings we tried, the best runs are shown for PolicyBlocks, SKILLS, the Reuse option,

hand chosen options, and primitive actions alone. In all cases, option performance,

in terms of cumulative reward was maximized among the parameters we tried when

α = .1 and ǫ = .01. The optimal policy was found when the slope of the line becomes
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constant. The top 4 options generated by PolicyBlocks outperformed even the “Hand

Chosen Options”. This was followed by SKILLS, using 2 options and setting η = 1.

Although the Reuse option initially outperformed the use of primitive actions alone,

this option failed to learn the optimal policy before 300,000 time steps.

Figure 4 shows results for the reservoir comparison. Again, we show the best runs

for each algorithm. The options generated by SKILLS, using 5 options, setting α = .1,

ǫ = .01, and η = .5, fared best. Just below that is the Reuse option. PolicyBlocks

(setting α = .1, ǫ = .05, and using the top 3 options) performed better than using

only primitives, but not as well as the other option selection schemes.

Figure 5 shows results for the effects of the number of options for PolicyBlocks

on a grid-world. The performance is similar with 2, 3, or 4 options. Below these is

the top single option, and at bottom is the performance of the top 5 options. All

of these outperformed primitive actions except for the top 5 options, which failed to

learn the optimal policy after 300,000 time-steps.

Since there are 220 possible mergings, we were pleased to find that the vast

majority of processor time was spent on Q-learning. Creating the options never took

more than a few seconds once the sample solutions were found. This is because it was

rare that more than 8 partial policies could be merged without having a null result.

3.5.2 Merging

As mentioned in Chapter 2, merging is the process of forming an equivalence

class from items that appear in the same context. Equivalence classes can help reduce

our energy function from Equation 3.1 because they allow us to form chunks where
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we couldn’t before. For example, suppose we have 1024 data items, where 256 are

samples from each of the following 4 cases

{E, F, · · · , T} × {e, f, · · · , t}

{EE, FF, · · · , TT} × {ee, ff, · · · , tt}

{E, F, · · · , T} × {ee, ff, · · · , tt}
{EE, FF, · · · , TT} × {e, f, · · · , t}

For example, we have data items such as {F,m}, {GG, ii}, {H, ll}, and {GG, ii}.

Suppose our ontology has about a million nodes, making the universal cost of a link

roughly 20 bits. Then the initial cost of our 1024 items is 1024 · 2 · 20 = 40, 960 bits.

If we form the relevant equivalence classes (e.g., A = E|F |G · · · |T ), this allows us to

form chunks for each of our 4 cases. Then the cost of each of the 1024 items is the

cost to call the chunk (20 bits) plus the cost of specifying the instantiation for each

equivalence class. For example, the cost of specifying F |A is log2 |A| = log2 16 = 4

. So this cost is 2 · 4 = 8 bits. This brings the total cost for each pair using

our equivalence classes to 8 + 20 = 28 bits. Since there are 1024 pairs, this is

28 · 1024 = 21, 920 bits. We also need to take into account the cost of constructing

the chunks and the equivalence classes, which is 20 bits for each link, and there are

4 equivalence classes each with 16 links. Then there are 4 chunks, each with 2 links.

This is a total of 4 · 16+ 4 · 2 = 72 links, or 72 · 20 = 1440 bits. So the total new cost

using equivalence classes is 21, 920 + 1440 = 23, 360 bits. Thus, using equivalence

classes, we save 17, 600 bits out of 40, 960, or we reduce our description length by

43%.

The question remains of how we find these equivalence classes to begin with. We

do this by creating a new set of feature-sets where each feature-set is the context for a
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Table 3.4. An artificial grammar.

< S > ::= {< doubles > < M >}
< M > ::= < A > (with probability .4) | < B > (with probability .6)
< A > ::= < 4 >, < 5 >, < 6 >, < 7 >
< B > ::= < 1 >, < 2 >, < 3 >

< doubles > ::= < AA > < BB > < CC > < DD > < EE > < FF > < GG >
< 1 > ::= 1A | 1B | 1C | 1D | 1E | 1F
< 2 > ::= 2A | 2B | 2C | 2D
< 3 > ::= 3A | 3B | 3C | 3D | 3E | 3F
< 4 > ::= 4A | 4B | 4C
< 5 > ::= 5A | 5B | 5C | 5D | 5E
< 6 > ::= 6A | 6B | 6C | 6D | 6E | 6F
< 7 > ::= 7A | 7B

< AA > ::= aa, | ∅
< BB > ::= bb, | ∅
< CC > ::= cc, | ∅
< DD > ::= dd, | ∅
< EE > ::= ee, | ∅
< FF > ::= ff, | ∅
< GG > ::= gg, | ∅

feature from the original feature-set. Then we use our chunking algorithm on this new

set of feature-sets to generate candidate merges. This gives us both an equivalence

class ontology and the contexts for which these are equivalent.

To illustrate this, we artificially generated 9,872 feature-sets by the sampling

from the grammar in Table 3.4.

We sampled from this 10,000 times, and eliminated duplicates, which gave us

9,872 items, a sampling of which are shown below.

{aa, bb, cc, dd, ee, 4B, 5D, 6D, 7B} {aa, bb, ee, gg, 4C, 5A, 6D, 7A} {bb, ee, gg, 4C, 5E, 6F, 7B}

{aa, cc, ee, ff, 4A, 4B, 5B, 6B, 7B} {cc, dd, gg, 4C, 5A, 6B, 7B} {aa, bb, dd, 1F, 2A, 3A}

{aa, bb, dd, ff, gg, 1C, 2D, 3F} {bb, cc, ff, gg, 1E, 2C, 3F} {cc, ff, 1B, 2A, 3B}

{bb, cc, dd, ee, 4C, 5D, 6B, 7B} {cc, dd, ee, 4C, 5A, 6C, 7B} {ff, 4B, 5E, 6E, 7A}

{bb, cc, dd, gg, 1F, 1E, 2B, 3D} {aa, dd, ff, 4A, 5E, 6C, 7B} {1A, 2A, 3F}
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Fig. 3.14. The matrix formed from 9,872 samples. Entry i, j is the number of
times feature i co-occurs with feature j. White is 0 times and black is 1,000 times or
more, with shades of grey for values between.

Now our goal is to get back the original 8 equivalence classes, given only these

unordered sets.

To do this, we create “context” vectors for each feature. That is, we create a

co-occurrence matrix where entry i, j is the number of times feature i co-occurs with

feature j. The 39 by 39 matrix for our features is shown in Figure 3.14.

We then treat the rows of this matrix as feature-sets and chunk these. This

gives us the ontology in Figure 3.15. Not only does this give us candidate equivalence

classes, but it also provides us with the common context under which these features

are interchangeable. Note that the features 4A, 4B, and 4C form an equivalence class

under node N00003. Not shown in this figure is the context inside node N00003, which

says that each of these nodes occurs with 5A at least 432 times, 5B at least 393 times,
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1A

N 0 0 0 1 0

1B 1C 1 D 1E1F

2A

N 0 0 0 0 8

2B 2C 2 D

3A

N 0 0 0 1 1

3B 3C 3 D3E 3F

4A

N 0 0 0 0 3

4B4C

5A

N 0 0 0 0 7

5B5C 5 D 5E

6A

N 0 0 0 0 2

6B 6C 6 D 6E 6F

7A

N 0 0 0 0 6

7Ba a

N 0 0 0 0 4

bbcc dd

e e

N 0 0 0 0 0

ff gg

N 0 0 0 0 1

N 0 0 0 0 5

N 0 0 0 0 9

Fig. 3.15. The results of chunking context. We extract equivalence classes by
treating the ancestors of each node as an equivalence class. These correspond to the
equivalence classes in the grammar in Table 3.4.

7B 1061 times, etc..

As another example, suppose we have 16 equivalence classes with 4 members

each, and we pick pairs of these equivalence classes, but not uniformly. That is, the

pair C0, C3 might be likely, but C0, C2 not. If we have 400 unique samples, the co-

occurrence matrix will be as shown in Figure 3.16. As shown, we can see not only the

equivalence classes, but also which equivalence classes are co-occur with each other.

Given this matrix, we can use methods similar to (Kemp & Tenenbaum 2008) to

discover the classes.

Ideally, the elements in an equivalence class should be mutually exclusive. For

example, if A occurs if and only if B occurs, then these two features will have exactly
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Fig. 3.16. The matrix formed from 400 samples. There are 16 equivalence
classes with 4 members each.

the same vector. However, if we ran chunking on the original set of feature-sets, this

should have already created a new chunk (called C say) of A and B. Then we’ll only

have a single instance of A or B, namely in C, and C will have the “context” feature-set.

So, if A and B co-occur together a lot, chunking should have already chunked them,

so every place where they co-occur gets replaced by the symbol for the chunk.

To make this explicit, we show our merging algorithm in Table 3.5. We’ve shown

as proof-of-concept that chunking contexts can be used to discover equivalence classes.

We leave for future work combining Chunking and Merging to create a single ontology

with ANDs and ORs. Since merging is simply chunking contexts, if we have a good

chunking algorithm, this will spill over to our merging algorithm.

Also note that by chunking context, if we have 2 nodes in an equivalence class,

the context under which these nodes are equivalent is found simply bind finding the
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Table 3.5. The Merging algorithm

// Returns a set of candidate equivalence classes.
// S is an ontology. This ontology could be “flat” (i.e., raw feature-sets)
// or a heterarchical conceptual structure.
Merger (S)

// Find the cooccurrence tallies t (a, b) for every pair of nodes in S
foreach top-level “instance” node i ∈ S

create i’s “flattened” set flat (i) by doing the following
turn i ON
use the truth-derivation algorithm to find what other nodes turn ON

foreach pair of elements (a, b) ∈ flat (i)× flat (i)
increase the tally t (a, b) by 1. (This tally is initialized to 0.)

// Now create the “context” vectors from the tallies
let F = ∅ // F is an empty ontology
foreach node n ∈ S

create a feature-set fn, where the feature ci for fn is t (n, i)
let F = F ∪ fn // Add fn to F

// Crunch the “context” vectors
let M = parentCrunch (F )
// Now, extract the equivalence classes
let EQClasses = ∅
foreach node m ∈ M

// a is an ancestor of m iff m is a descendent of a
let A (m) be the ancestors of m
let EQClasses = EQClasses ∪ A (m)

return EQClasses

nodes’ common ancestor and “flattening” that node (i.e., finding its descendent sensor

nodes). For example, in Figure 3.15, nodes 4A, 4B, and 4C all point to node N00003.

For clarity, the descendents of node N00003 aren’t shown in the figure, but these

include nodes 6C, because 4A, 4B, and 4C all cooccur with node 6C with around the

same frequency.

Ideal Energy Cost for Chunking and Merging The following theorem is

given to help guide when Merging saves us description length.

Theorem 5. If we have 2 equivalence classes with m items each, where there are p
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instances of each of the m2 items (and each item is equally likely), and we assume an

ideal Huffman encoding to specify each item (where each item takes n bits initially),

it will be more cost effective to merge than to crunch the items if n < 2 log2 (m).

Proof. The number of bits needed to specify the pm2 pairs for naive, crunched, and

merged encodings are:

NaiveCost (m,n, p) = 2pnm2

CrunchedCost (m,n, p) = pm2 (n + log2 (m)) + nm2

MergedCost (m,n, p) = pm2 (n + log2 (m)) + 2nm+ 2n + 2 log2 (m)

So, we choose merge over chunk when:

pm2 (n+ log2 (m)) + nm2 > pm2 (n + log2 (m)) + 2nm+ 2n + 2 log2 (m)

nm2 > 2nm+ 2n + 2 log2 (m)

m2 > 2m+ 2 +
2 log2 (m)

n

m2 − 2m+ 1 > 3 +
2 log2 (m)

n

(m− 1)2 > 3 +
2 log2 (m)

n

m > 1 +

√

3 +
2 log2 (m)

n
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If we let e =
√

3 + 2 log2(m)
n

−
√
3 (a positive, but likely small value), then

m > 1 +

√

3 +
2 log2 (m)

n
−
√
3 +

√
3

m > 1 +
√
3 + e

m ' 2.732 + e

m ' 3

So, as long as we have 2 equivalence classes, roughly equally distributed with at

least 3 items in each, it should be more cost effective to merge than to crunch the

items.

For our approximation to be broken, the following must hold:

√

3 +
2 log2 (m)

n
> 2

2 log2 (m) > n

If we have 1,024 features, then n will be 10, so m would have to be 2 · 25 or 64, which

is unlikely for such a small number of features.

Note that under this framework, forming a single equivalence class by itself yields

no savings.
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3.6 Application to Supervised Learning

Any intelligent system will need to be a lifelong learner. That is, when encoun-

tering new tasks, any intelligent system should be able to draw upon background

knowledge constructed from years’ worth of experience.

Standard supervised learning systems don’t have this background knowledge

upon which to draw. Compared to standard supervised learning algorithms, people

require remarkably few training instances to learn a concept. For example, consider

the “adze” shown in Figure 3.17. We assume that shown only the leftmost image (of

the man holding the adze) and being told “This is an adze.”, most English-speaking

adults would be able to correctly identify an adze from a group of images. Given all 3

images, it’s doubtful that any person would have problems correctly identifying this

tool.

There are a few points to note. First, we assume that people can learn the adze

concept from these few images even if they’ve never seen an adze before. That is,

it isn’t the case that we have the adze concept, then just need to name it. Yet, we

somehow know that the adze is the tool the man’s holding. Second, we can learn

this concept in the absence of negative examples. That is, we are shown no images

of which we are told “This is not an adze.”. Somehow, people use their existing

conceptual structures to learn from so few examples. We propose to shed light on

some of these questions by showing how we can use conceptual structures developed

by Ontol to likewise learn from a handful of positive examples.

A final note (that our model doesn’t yet directly address, but which we also hope

to shed some light on), is that we assume that we can learn the adze concept given
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Fig. 3.17. An adze.

only the image on the left (with the man). In this case, the adze isn’t the only thing

in the image. Conceivable, the concept of “adze” could mean the man’s particular

stance, the type of split in the log, the man’s name, or the type of shirt the man’s

wearing.

We demonstrate the utility of the ontology learned in Ontol by introducing a

new algorithm for semi-supervised learning, which uses ontologies learned with Ontol

on tasks where we’re given a large set of unlabeled instances and only a handful of

labeled instances, where these instances might all be positive examples. It should

be noted that our focus was never on semi-supervised learning, but this area was a

simple extension of our system.

3.6.1 Related Work

The field of Semi-supervised Learning addresses how unlabeled data may be

used to improve performance in the scarcity of labeled data. For a survey of Semi-
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supervised Learning, see (Zhu 2008). Generally, Semi-supervised learning systems

extract features from the unlabeled data, then feed these features (for the labeled

data) into a standard learning algorithm such as Support Vector Machines (SVMs).

This approach, however, requires negative examples to train the SVM. This approach

also typically assumes that the labeled data comes from the same distribution as the

labeled data. For example, this approach would assume that we’ve seen several adzes

before being told what an adze is.

To address this latter problem, (Raina et al. 2007) introduces the idea of Self-

taught Learning. This algorithm attempts to extract features that are useful in

general. For example, the algorithm extracts useful features from images, such as

edge detectors, then puts these features into a SVM to learn new images. However,

this approach also requires negative examples. From this work, we suspect that the

concepts developed by Ontol, such (such as contiguous “chunks” of pixels for image

data) can be used to increase learning efficiency.

Both Semi-supervised learning and Self-taught learning not only require both

positive and negative labeled instances, but both typically require tens if not hundreds

of labeled instances. We know of little work on Semi-supervised learning from only

a handful of training instances. One exception is (hua Zhou, chuan Zhan, & Yang

2007), which claims to learn from a single labeled positive example. This algorithm

basically uses a distance metric to find similar unlabeled instances. However, this

distance metric is not learned from the unlabeled instances, so it must be modified

by the user for each domain.

There has been work on learning from only positive instances. For example, both

(Elkan & Noto 2008) and (Meraz et al. 2004) assign a probability that unlabeled
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examples are positive or negative given the distance from labeled nodes, but these

distance metrics aren’t learned from unlabeled examples, so they must be modified by

the user for each domain. These approaches also typically need hundreds of positive

instances to make accurate classifications. The idea of “one-shot” learning has been

explored in the work of (Fei-Fei, Fergus, & Perona 2006), which shows how visual

domain knowledge can be used with Bayesian methods to learn object categories from

a few positive instances. However, the implementation in this approach is limited to

visual domains.

There are Inductive Logic Programming algorithms that can learn from only

positive data, for example (Muggleton 1996). This algorithm works by finding the

“least general generalization”. That is, it finds the theory that includes all the positive

examples, but as few of the remaining instances as possible. However, this doesn’t

begin by making a general representation from the unlabeled data that’s useful across

several categorization tasks. Instead, it uses only bottom-level features.

3.6.2 Semi-supervised Learning using an Ontology

Here we describe our algorithm for using an ontology created by Ontol to learn

from a handful of positively labeled examples. The basic idea behind the algorithm

is searching for theories to maximize a Bayesian energy function.

An Energy Function for Semi-supervised Learning Given an ontology

Ω, a set of unlabeled data U , and a set of labeled data L, we seek to construct a

Boolean expression M consisting of the terms Mi, where each term Mi is an element
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of our ontology Ω. We assume that M is true for every positive instance (i.e., when we

run our truth-derivation algorithm from Section 3.4 on the instance, M is true) and

M is false for any negative instances we’re given. There are many such expressions,

so we search for the M that minimizes for the value in 3.4 below.

E (M) = |D| log2N (M) + |M | log2 |U | −
∑

Mi∈M

log2N (Mi) (3.4)

where N (Mi) is the number of items in the unlabeled data U for which Mi is true,

and N (M) is the number of items in the unlabeled data U for which M = true.

Intuitively,
(

|M | log2 |U | −∑Mi∈M
log2N (Mi)

)

is the description length of the

model, and (|D| log2N (M)) is the description length of the data using the model.

Theorem 6. If we assume a description-length prior on our model, then Equation

3.4 maximizes the probability of our model M given an observation D.

Proof. If we assume that we construct M such that for every Di ∈ D, M is true if

Di is true (i.e., P (M = true|Di) = 1), then

P (Di|M = true) =
P (M = true|Di)P (Di)

P (M = true)
=

1
|U |

N(M)
|U |

=
1

N (M)
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Using this, our equation to maximize the probability of M given D becomes

argmax
M

P (M |D) = argmax
M

P (D|M)P (M)

P (D)

= argmax
M

(P (D|M)P (M))

= argmax
M

(

P (D|M)
∏

Mi∈M

N (Mi)

|U |

)

= argmax
M

(

∏

Di

P (Di|M = true)
∏

Mi∈M

N (Mi)

|U |

)

= argmax
M

(

log2
∏

Di

P (Di|M = true)
∏

Mi∈M

N (Mi)

|U |

)

= argmax
M

(

∑

Di

log2 P (Di|M = true) +
∑

Mi∈M

log2
N (Mi)

|U |

)

= argmax
M

(

− |M | log2 |U |+
∑

Di

log2 P (Di|M = true) +
∑

Mi∈M

log2N (Mi)

)

= argmin
M

(

|M | log2 |U | −
∑

Di

log2 P (Di|M = true)−
∑

Mi∈M

log2N (Mi)

)

= argmin
M

(

|M | log2 |U | −
∑

Di

log2
1

N (M)
−
∑

Mi∈M

log2N (Mi)

)

= argmin
M

(

|M | log2 |U |+ |D| log2N (M)−
∑

Mi∈M

log2N (Mi)

)

which is the same as minimizing Equation 3.4.

Searching to Minimize Equation 3.4 We seek to find a Boolean expres-

sion M to minimize Equation 3.4. We do a lattice-like search similar to Inductive

Logic Programming (ILP) (Muggleton 1994). Our search is bidirectional in the sense

that it both refines the search and relaxes the search. Refinement is done by adding
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to existing conjunctions, and relaxation by adding new conjunctions to our existing

theory using an OR. For simplicity, our Boolean expression is a disjunction of con-

junctions. Essentially, we initialize our expression M to the disjunction that contains

our positive instances, then we hillclimb on Equation 3.4. We generate variants of M

by generalizing by including the parents of each node as new disjunctions in our ex-

pression, and by adding nodes’ parents to existing conjunctions. Our semi-supervised

learning algorithm doesn’t need negative instances, but it can make use of them if

they’re provided. So, if there are negative instances and a new version of M contains

negative instances as members of the class for which M is true or doesn’t contain

positive instances, then we throw that version out. A more detailed algorithm is given

in Table 3.5.

3.6.3 Experiments

We tested our Semi-supervised learning algorithm on several datasets from the

UCI Machine Learning Repository (Blake & Merz 1998). For each dataset, we tested

classification using a range of positive and negative examples. If a datasets had n > 2

classes, we treated the dataset as n separate binary class problems. We created a

baseline by giving the accuracy if every item is classified as the most frequent class

for the dataset. For comparison, we show results for our algorithm with the exception

that The Cruncher isn’t run. This modified algorithm is the same as that given by

(Muggleton 1996). No other Semi-supervised learning algorithms work with so few

positive examples. The results are shown in Table 3.7, in which categories are learned

using only 5 positive instances and no negative instances, and Table 3.8, in which we

show the effects of increasing the number of positive instances and adding negative
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Table 3.6. The Semi-supervised Learning algorithm.

// Given unlabeled data U , positive instances P , negative instances N
// Return set of u ∈ U such that u is predicted to be positive.
// (For shorthand, we define M (u) to be true if when we parse
// u using ontology Ω, M is ON.)
semiSupervisedLearning (U , P , N)

// Crunch to get the ontology Ω, using algorithm from Table 3.1.
let Ω = Cruncher(U)
// Now search for M to maximize Equation 3.4.
parse the positive instances P according to Ω, and add them to the ontology
// Initialize M to be the disjunct of the positive instances.
let M =

∨

p∈P p

let openNodes = {M}
let closedNodes = {}
// Hill climb
while |openNodes| > 0 and some number of iterations hasn’t been reached

// now try variants of M by adding parents.
Randomly choose L from openNodes and remove it, and add it to closedNodes.
// “open” L by generating all variants,
variants = open(L, P,N)
// add these to openNodes, if they’re not already in openNodes or closedNodes.
let openNodes = openNodes ∪ (variants− closedNodes)
evaluate each variant using Equation 3.4, and keep track of the model that minimizes this Equation.

// Return all u that turn ON M
return {u ∈ U |M (u) istrue}

// To “open” a Boolean expression L, add its parents to the
// disjuncts and to each conjunct. P and N are the positive
// and negative instances.
open(L, P,N)

variants = {}
foreach parent in all parents of nodes in L

create Ld by adding that parent to L as a new disjunction
for all old disjunctions j in Ld

// A disjunction “covers” another if the set that turns ON the
// former is a superset of that for the latter.
if the new disjunction completely covers another disjunction

then remove the covered disjunction from Ld

foreach existing conjunction c of L
create Lpc by adding that parent to c

add all Lds and Lpcs to variants
remove any l ∈ L for which ∃p ∈ P |l (p) = false
remove any l ∈ L for which ∃n ∈ N |l (p) = true
return variants
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instances. The data was generated by running the following process 100 times: For

each data set, a class was chosen at random, and p positive instances and n negative

instances were found from that class. These, along with the unlabeled data, were

then fed to the respective classifiers.

From this table we can see that Ontol is competitive with the ILP algorithm,

being statistically significantly better for 2 of the datasets (connect-4 and zoo), while

never being statistically significantly worse than ILP.

Both ILP and Ontol performed worse than the Baseline for the connect-4, SPECT,

and tic-tac-toe datasets. We suspect that this is because such a tiny sample size (5)

with no negative examples could easily lead to overgeneralization of positives, yielding

a high percentage of false positives (Type I errors), which is what we see.

Ideally, the labeled examples should have a significant amount of breadth. For

example, if we want to learn the concept of “mammal”, our exemplars shouldn’t be 3

different dogs. In that case, our learner would be more likely to come to the conclusion

that all mammals are dogs. Our exemplars were chosen randomly. So this situation

—a too narrow selection of exemplars— happened occasionally. We speculate that

when people give other people examples, there might be an implicit assumption that

the teacher will give training examples that won’t lead to an overspecialized theory.

Conversely, we would also expect our training examples not to share some rare

property that we’re not interested in. For example, if our training instances for

“mammal” are a cow, a dog, and a hamster (all of which are domestic, a relatively

rare property among animals), we might wrongly infer that a chicken is also a mammal

because it’s domestic.
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Table 3.7. Results for Semi-supervised Learning. Various UCI datasets are
shown with training on 5 positive instances (and no negative instances). The aver-
age percentage accuracy is shown for “baseline” (classifying every item as the most
frequent classification), Muggleton’s ILP algorithm and our “Ontol” algorithm. The
95% confidence interval is shown for the means. Also shown are the average percent-
age of Type I and Type II errors. Note that these are unnecessary for the Baseline
case because every error for Baseline is a false positive.

ILP Ontol

Dataset Baseline Avg. TI% TII% Avg. TI% TII%

connect-4 76.13% 46.67±2.34% 39.18% 14.14% 50.69±2.45% 33.21% 16.10%
house-votes-84 61.38% 82.48±2.70% 7.03% 10.50% 83.14±2.08% 5.79% 11.06%
kr-vs-kp 53.10% 56.49±1.71% 27.37% 16.14% 54.65±1.32% 25.60% 19.75%
mushroom 51.40% 71.00±2.27% 12.06% 16.94% 72.38±2.05% 8.36% 19.27%
nursery 67.85% 72.03±3.40% 21.23% 6.73% 71.72±3.63% 20.86% 7.42%
SPECT 79.40% 56.84±1.30% 27.16% 16.00% 57.37±1.50% 24.99% 17.64%
tic-tac-toe 65.34% 53.85±1.41% 23.12% 23.03% 53.58±1.80% 21.09% 25.33%
zoo 83.03% 83.09±4.15% 16.71% 0.20% 92.59±1.74% 6.95% 0.46%

In Table 3.8, we show the effect of increasing the training size (and adding

negative examples) for learning the Zoo dataset. As we’d expect, increasing negative

examples decreases the number of false positives. Also note that Ontol consistently

beat out ILP, and both were able to get nearly perfect accuracy from only 40 labeled

instances.

As to why Ontol works so well, we suggest that a node is created in our ontology

because it’s useful for characterizing the data. We assume that concepts that people

develop or might be interested in are likewise useful for characterizing our world.

The nodes in our ontology bias the search. For example, the description length

of hair, milk, NO-eggs is length 1 given our ontology. Without the ontology, it’s 3.

(Note that the cost of specifying each node is a little more expensive if there are more

nodes though, so the ontology can hurt us.)
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Table 3.8. Results for Semi-supervised Learning on the Zoo dataset for
different training set sizes. The percentage of false positives (Type I error) is also
shown.

ILP Ontol

#Pos #Neg Avg. TI% TII% Avg. TI% TII%

5 0 83.09±4.15% 16.88% 0.20% 92.59±1.74% 7.02% 0.46%
10 0 86.67±3.81% 13.46% 0.00% 91.70±1.85% 8.38% 0.00%
20 0 86.87±3.61% 13.26% 0.00% 92.70±1.64% 7.37% 0.00%

5 5 93.08±2.17% 6.66% 0.33% 95.17±1.75% 4.39% 0.49%
10 5 92.79±2.44% 7.28% 0.00% 94.93±1.79% 4.97% 0.15%
20 5 94.25±1.89% 5.81% 0.00% 95.38±1.74% 4.67% 0.00%

5 10 96.01±1.10% 3.10% 0.93% 96.91±0.88% 2.32% 0.80%
10 10 97.43±0.78% 2.54% 0.06% 98.34±0.63% 1.48% 0.20%
20 10 97.15±0.97% 2.88% 0.00% 97.52±0.88% 2.50% 0.00%

5 20 97.68±0.57% 1.08% 1.26% 98.64±0.45% 0.74% 0.63%
10 20 98.56±0.44% 1.18% 0.27% 99.06±0.36% 0.88% 0.07%
20 20 98.93±0.50% 1.08% 0.00% 98.78±0.51% 1.23% 0.00%

Also, it has not escaped our attention that there is considerable debate about

the role negative examples play in child language acquisition (Marcus 1993), (Rohde

& Plaut 1999). Gold (Gold 1967) and Chomsky (Chomsky 2005) argue on theoretical

grounds that there must be some innate Universal Grammar or bias in the human

brain to allow humans to learn language from so few examples and in the absence

of negative examples. This argument is referred to as “Poverty of The Stimulus”

(POTS). Our semi-supervised learning model may lend some insight into how vocab-

ulary might be learned from only positive examples. We leave as future work how

these ideas may also extend to grammar acquisition. We speculate that Chomsky’s

bias may be nothing more than some variant of an information theoretic derivable

evaluation function, fundamentally the same as Ockham’s Razor.
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3.6.4 Discussion

In this Chapter, we’ve introduced Ontol, which builds a useful conceptual struc-

ture from raw feature-set data. We’ve demonstrated the utility of the concepts learned

by Ontol through a compression algorithm, a Reinforcement Learning algorithm, and

a Semi-supervised learning algorithm. But we believe the value of Ontol lies beyond

these “spin-off” algorithms. We mean for Ontol to be the backbone of a full cognitive

system. Since it’s knowledge-free, it’s applicable to a wide range of domains. Fur-

thermore, if a relational domain can be expressed as a collection of feature-sets, then

the algorithms for ontology formation, inference, and constraint satisfaction search

can be applied to these systems. For example, if actions and goals can be phrased as

constraints, then planning can be implemented as a constraint satisfaction problem.



Chapter 4

PARAMETERIZED CONCEPTS

Propaganda, slavery, decoding, entrapping, mimicry, panhandling, Tro-

jan horses, highwaymen, cuckoos: they are all present among the ants and

the predators and social parasites that victimize them. Such words may

seem unduly anthropomorphic, turning ants and their associates into lit-

tle people. But perhaps not. It is equally possible that the number of

social arrangements available to evolution anywhere in the world, or even

in the universe, is such that the phenomena we have recounted here are

inevitable natural categories of exploitation wherever it may occur.

–From “Journey to the Ants” (Hölldobler & Wilson 1998)

This chapter goes into detail about how we can find behaviorally similar cortical

regions and use these to compress our ontology, generalize knowledge, and discover

invariant concepts. These algorithms assume that we already have an AND/OR

ontology created by Ontol.

125
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Recall from Subsection 2.2.2 that we can’t get translation invariance from chunk-

ing and merging alone. We need isomorphisms among cortical regions to get this.

Furthermore, because different structures can have similar behavior (in terms of how

truth-settings for nodes influence each other, as discussed in Subsection 2.2.2), we

need behavioral isomorphisms. There are several open questions for this. The first

question we attempt to answer is how parameterized concepts can be represented in

the same framework as Ontol. We provide a proof of concept for how this might be

done. Secondly, there’s the question of how behavioral isomorphisms can be found

efficiently. That is, how can we recognize whether 2 cortical regions are behaviorally

similar to each other. We show a proof of concept of how this might be done by

introducing “behavioral signatures” for cortical areas. A third question that we leave

for future work is how the cortical regions can be segmented in the first place. That

is, the ontologies produced by ontol are usually connected in the graphical sense (i.e.,

there’s a path from each node to every other), so the cortical regions are rarely neatly

segmented. This part, finding and representing parameterized concepts, is an essen-

tial span of the bridge from raw-sensors to a rich relational theory of the world. It

feeds into Phase 3, and ultimately to Phase 4, which completes our story of how a

system might go from raw sensor data to a theory rich enough to have an “intuitive”

theory of numbers.

As described in Subsection 2.2.2, it’s possible for 2 cortical regions to have sim-

ilar behavior, but different structure. Such regions are “behaviorally similar”, but

not “structurally similar”. Since our cortical regions are autonomously constructed,

only the regions’ behavior matters. Therefore, we’re interested in finding behaviorally

similar cortical regions. We define a mechanism and representation by which behav-

iorally similar cortical regions can be parameterized and called, and we provide a
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heuristic “signature” by which the behavioral similarity of different cortical regions

can be efficiently measured. Using these, we can create and use parameterized cortical

regions to further reduce the description length of our ontology.

4.1 Related Work

Though we know of no work that extracts behavioral similarity from different

structures, there has been work on analogy, graph isomorphism, and graph grammars.

These are reviewed below.

4.1.1 Analogy

O’Donoghue breaks analogy into 5 phases (O’Donoghue 2005): representation,

retrieval, mapping, validation, and induction. Representation deals with how knowl-

edge and analogies are represented. Retrieval concerns finding where an analogy

might occur. Mapping is the process of finding which parts of a pair of situations or

domains correspond to each other. Validation is the process by which one determines

how valid an analogy is. Finally, induction is the process by which general concepts

are learned by the analogy. For example, if one notices that the situation where an

ant forcibly takes a beetle corpse from another ant is analogous to the situation where

a person forcibly takes another person’s wallet, then one can create a general concept

from this analogy (possibly called “robbing”).

In this 5 phase terminology, most previous work on analogy has focused on

the mapping phase (Marshall & Hofstadter 1996), (Falkenhainer, Forbus, & Gentner
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1989). Though there has also been work on retrieval (Forbus 2001), (O’Donoghue

2005), most of this work has assumed that the data has already been pre-segmented

into domains of relatively small size. This requires either a segmentation algorithm,

or (more likely) a human expert. Furthermore, all of these algorithms are for struc-

tural similarity, not behavioral similarity. An overview of many of these systems

can be found in (O’Donoghue 2005). It has been argued from theoretical grounds

that analogy should bring about conceptual change (Dietrich 2000), but we know

of few existing algorithms that do analogical induction. One exception is the LISA

algorithm (Hummel & Holyoak 2006) which, however, must be provided with the

domains for analogizing, and also works only on domain structure, not behavior. We

will necessarily also address issues of representation and mapping. As for validation,

the driver in our system is description length, so a concept is useful if it best reduces

description length.

4.1.2 Graph Isomorphism

Finding analogies is structurally similar to finding isomorphisms between and

within graphs. It’s conjectured that there’s no polynomial time algorithm for deter-

mining whether a pair of arbitrary graphs are isomorphic (Skiena 1990), although

some special cases have faster algorithms (Skiena 1990), (Hopcroft & Wong 1974). In

practice, the Nauty algorithm (McKay 1981) efficiently finds isomorphisms within a

graph. It does this using a number of time-saving heuristics, many of which can be

useful for our purposes.

The SUBDUE system (Holder, Cook, & Djoko 1994) compresses graphs by find-

ing common substructures. Unlike many other analogy systems, the data in SUBDUE



129

is not assumed to be pre-segmented, and minimum description length is the guiding

principle by which substructures are evaluated. Furthermore, SUBDUE does induc-

tion in the sense that frequently occurring substructures are replaced by a node that

symbolizes the full substructure. Although SUBDUE and other systems don’t do

behavioral isomorphism, if we encode behavior as a graph, we can throw our data at

some of these systems.

4.1.3 Graph Grammars

Since the data is unsegmented, classification is akin to parsing a graph given

a graph grammar, and building the ontology is akin to learning a graph grammar.

Work has been done on estimating parameters of a graph grammar (Oates, Doshi,

& Huang 2003), but there has been little work on learning the structure of graph

grammars.

4.2 Mechanics of Parameterized Calls

This section describes how parameterized cortical areas are represented and used.

Suppose we have two cortical regions that are behaviorally isomorphic, such as

those shown in Figure 4.1. If we’re only interested in the behavior of these graphs

in terms how their bottom inputs affect each other’s ON/OFF value, we can extract

out the AND/OR structure above these and parameterize the differences. For this

example, we note that, in the left network, input nodes C, D, X, Y, Z, and W play

the role of to E, F, K, L, M, and N, in the right network respectively (actually nodes
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Fig. 4.1. Two isomorphic cortical regions. These cortical regions happen to be
both behaviorally and structurally isomorphic.

Y and Z are interchangeable with each other, as are nodes L and M).

Figure 4.2 shows how we represent this parameterization. To do this, we intro-

duce a new kind of node, called a BIND node that, when ON, causes the values of all

its children to be the same value.

If a BIND node is OFF, it has no effect on the values of its children. If a BIND

node with 2 children is ON, and one of its children is UNSPECIFIED, the BIND node

causes this child to be the same value as the other child. It should be rare that a

BIND node is ON with one child ON and the other OFF. If this happens, the BIND

node won’t change either value, but should raise an error because something has gone

wrong. More formally, if A is a BIND node that has children C1 and C2, then the

values of C1 and C2 are modified according to the following cases:

1. If A is OFF, then the values of C1 and C2 are unaffected.

2. If C1 and C2 have the same values, then no nodes change values.

3. If A is ON, C1 is ON or OFF, and C2 is UNSPECIFIED, then C2 is set to ON
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or OFF, respectively.

4. If A is ON, C2 is ON or OFF, and C1 is UNSPECIFIED, then C1 is set to ON

or OFF, respectively.

5. If A is ON, C1 is ON or OFF, C2 is ON or OFF but not the same value as C1,

then an error is raised.

For example, in Figure 4.2, the OR node “B” acts as a gate for which set (I (=

{C,D,X, Y, Z,W}) or J (= {E, F,K, L,M,N})) is bound to set R (= {1, 2, 3, 4, 5, 6}).

If B is ON, only one of I or J need be ON, so for this example, I and J are mutually

exclusive.

If B is OFF, then I and J will both be off. This will leave nodes 1, 2, 3, 4, 5 and

6 all UNSPECIFIED.

Suppose that C,D and X are all OFF, Y and Z are both ON, and that W is

UNSPECIFIED. Suppose we then turn B ON and instantiate B by turning I ON. The

BINDs will cause nodes 1, 2, and 3 to all go from UNSPECIFIED to OFF. Likewise,

nodes 4 and 5 will turn ON, and 6 will remain UNSPECIFIED. At this point, the

rightmost AND will turn ON to explain nodes 4 and 5. (The middle AND won’t turn

ON because it’d then have to explain why 3 is set to OFF.) Because 6 is a child of

the rightmost AND, which is now ON, node 6 will also turn on. Because there’s an

ON BIND node that connects to both 6 and W (and W is UNSPECIFIED), W will

then be set to ON.

Note that I and J form an equivalence class because either can be bound to R.

We can also have “split” cortical calls, where not all the inputs are tied together.



132

Fig. 4.2. An example call graph, unifying the 2 graphs from Figure 4.1.
The OR node “B” gates which set is bound to R to “call” the common cortical area.
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Fig. 4.3. Six isomorphic cortical regions.

For example, instead of only 2 isomorphic cortical regions, Figure 4.3 shows 6 iso-

morphic regions. Note that, in the top row, the 4 rightmost nodes are all X , Y , Z,

and W , whereas in the bottom row, these are K, L, M , and N . Similarly, in the

1st column the leftmost 2 nodes are C and D. The same for E and F in the middle

column and G and H in the rightmost column.

Figure 4.4 shows how we can parameterize the cortical regions in Figure 4.3.

Here the input to the common region is “split”. In this figure, S, T , and U form an

equivalence class for possible parameters for Q (the nodes 1 and 2). Likewise I and

J form an equivalence class for the possible parameters for R. Using this construct,

we can represent 6 graphs using only 1 region. When the common region is large,

this can be a substantial memory savings. Furthermore, this mechanisms allows us to

generalize and create construct that we hadn’t seen before. At the top of the figure,

the AND node “P” makes it so that both Q and R are bound.

Thus, we have a mechanism for representing parameterized concepts in an Ontol
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Fig. 4.4. An example of a call graph with multiple parameterized input
regions.
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framework. But the question remains for how these behaviorally isomorphic regions

are found to begin with. For this, we introduce “behavioral signatures” in the next

section, which allow us to quickly gauge the behavioral similarity among cortical

regions.

4.3 Behavioral Signatures

In this section, we define what we mean by “behavioral similarity” of cortical

regions. We also give an example algorithm as a proof of concept for “behavioral sig-

natures” which allow us to quickly determine whether cortical regions are behavioral

similar.

The behavioral signature we use is essentially a “hash”, and uses the same basic

idea that we use to encode invariant concepts in Chapter 3 (see Figure 2.8). That

is, our signature is a bag of features that, though possible, it’s unlikely that another

cortical region will have the same set of features without without having the same

behavior. Again, this hash is unlike a checksum in that we want similar behavior to

have similar hashes. So the same principle that “binds” the dog-neck, dog-head, and

dog-body can also be used to “bind” different behavioral features. That is, the dog’s

neck is basically a connection between the dog’s head and the dog’s body. It’s the

overlap that makes it so that we don’t have to bind them explicitly.

We want our behavioral signatures to have the following properties:

1. If cortical regions A and B are behaviorally isomorphic, then the distance be-

tween their signatures should be small.
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2. Vice versa. That is (assuming the parameters sigTrials and subsetSize from

the algorithm in Table 4.1 are large enough) if 2 signatures are very close, the

cortical regions should be behaviorally isomorphic.

3. If cortical region A is a sub-isomorphism of cortical region B, then A’s signature

will be a subset of B’s signature.

For our behavioral signatures, we need to distinguish a set of nodes as “input”

nodes. Because of top-down unfolding, input nodes are also output nodes as described

by (Hawkins & Blakeslee 2004) and in Chapter 3. That is, we can set some “input”

nodes to UNSPECIFIED and some to ON or OFF, then run our truth-derivation al-

gorithm from Chapter 3, which will set the UNSPECIFIED nodes to ON or OFF. The

other nodes are considered “internal” nodes. Because we’re interested in behavior,

not structure, we treat the internal nodes as a black box. The behavior of the cortical

region, then, is essentially how the input nodes all affect each other. An important

constraint for generating signatures is that they must be invariant with respect to

input node ordering. This is because we’re looking for regions that are behaviorally

isomorphic, but we don’t know the ordering on inputs.

As an example, suppose we want to generate the signature for the cortical region

in Figure 3.2, with respect to the 10 input nodes 0 through 9. For this network, we

might turn ON nodes 4, 5, and 7, turn OFF node 3, and leave nodes 0, 1, 2, 6, 8

and 9 UNSPECIFIED. When we run our truth-derivation algorithm from Chapter 3,

nodes 6, 8 and 9 get turned ON as shown in Figure 4.5. (Some internal nodes get

turned ON, but we’re only interested in the external behavior of this cortical region.)

Once we have our set of input nodes, we generate the behavioral signature by
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Fig. 4.5. A call to a cortical region. Nodes 0-9 are “input” nodes, while the
remaining “internal” nodes are treated as a black box. Turning ON nodes 4, 5, and
7 and OFF node 3 causes nodes 6, 8, and 9 to turn ON.

randomly choosing subsets of nodes, and viewing the other nodes’ truth-values as a

result of changing the values of each subset. In our example, suppose we choose a

subset of size 3, and suppose we want to sample 1000 times.

To do a single sample, we randomly grab 3 of the input nodes. For each of

the 8 ON/OFF configurations, we set these 3 nodes, set the remaining 7 nodes to

UNSPECIFIED, then run the truth-derivation algorithm from Chapter 3 to get an

ON/OFF value for each of the 7 remaining nodes. For each of the remaining 7 nodes

we create a “Karnaugh line”, which is the value for this node under each of the 8

ON/OFF configurations. For example, if the Karnaugh line for node 1 in terms of

nodes 2, 5, and 6 is TTTFTFFT, this is shorthand that node 1 is ON for 5 of the 8

permutations of for nodes 2, 5, and 6 being ON or OFF. The 1st case being that
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these are all ON, etc..

These lines have been canonicalized. That is, all 6 orderings of the 3 nodes

were generated and the Karnaugh line that came last alphabetically was chosen. For

example, the line TTFTFTFT would be canonicalized to TTTFTFFT because the latter is

generated by swapping the 1st and 2nd variable for the former. So we have only 96

entries, and not 256.

The pseudocode for finding the behavioral signature of a cortical area is given in

Table 4.1. In this algorithm, the canonicalizeKarnaugh algorithm works by exhaus-

tively trying all subsetsize! permutations for the inputs to a Karnaugh map, then

reading the map from top to bottom, left to right, and returning the map with the

smallest numeric value, if we treat trues as binary 1s, and falses as 0s.

For illustration, the full signature from Figure 4.5 is shown in Figure 4.6 (along

with signatures for 3 other networks). These signatures were generated with 1000

samples, giving a total of 7000 Karnaugh line tallies per signature. The tally is given

for each of the 96 Karnaugh lines. So the Karnaugh line FFFFFFFF occurred 1112

times for network A. These signatures give us what we’re looking for: we’re able

to quickly tell whether 2 cortical regions are behaviorally isomorphic or not. Note

that the Euclidean distance between the signatures for A and B is small compared

to the distance between A and C. Note that these signatures are independent of the

node ordering, and are dependent only on the behavior of the internal nodes, not

on the structure. The distances shown in the bottom right of Figure 4.6 serve as

proof-of-concept that we can create a measure of behavior as a feature-set, where the

signature is independent of node ordering.
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Table 4.1. The algorithm to compute the behavioral signature of cortical
area C.

// C is a cortical region, I is the set of input nodes.
// samples is the number of random samples to take (in Figure 4.6 this is 1,000)
// subsetsize is the number of input nodes to force at a time (in Figure 4.6 this is 3)
// Returns a set of tallies, where each tally is for a canonicalized Karnaugh map with 2subsetsize entries
define BehavioralSignature (C, I, samples, sigT rials, subsetsize)

karnaughTallies = empty dictionary
repeat sigTrials times

sample = a random sample of subsetSize nodes from I
// Initialize the karnaugh maps
allMaps = empty dictionary
// Now go through all 2subsetSize values for these
foreach ON/OFF truth value permutation p of the nodes in sample

// Set the truth values
set the nodes in C to their respective values in p
run the parsing algorithm from 3.4 on C
foreach node n in C − I

// Add that node’s value to the karnaugh map
let allMaps[node][datuple] = n’s truth value

// Now canonicalize each map
foreach map in allMaps

canonicalizeKarnaugh (map)
// increment the tally for map
karnaughTallies[map]++

return karnaughTallies
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Also note that other isomorphism finding algorithms, such as the Structure Map-

ping Engine (Falkenhainer, Forbus, & Gentner 1989), SUBDUE (Holder, Cook, &

Djoko 1994), and others will fail to see the similarity between A and B because these

are different structures. The behavioral signatures introduced here are the only work

known to us that will detect the behavioral similarity between these cortical regions.

4.4 Discussion

We have introduced mechanisms for integrating analogy into an Ontol framework

and given proof-of-concept for these mechanisms, but there still remains much future

work. For example, there’s the question of how the cortical regions are segmented.

There’s the question of how behavioral signatures perform for networks with a large

number of inputs, and whether we should restrict our segments to smaller cortical

regions. Also, it may be fruitful to work directly in signature space for cortical areas.

Since the behavioral signatures are feature-sets themselves, we should be able to

run these signatures through (another instantation of) Ontol to efficiently represent

relational concepts.

It should also be noted that by representing relational structures as static feature-

sets, we’re essentially addressing The Binding Problem (von der Malsburg 1999),

which basically asks how feature-sets can be used to represent relational data in a

neurologically plausible manner. This begs the question of whether our behavioral

signatures or our BIND mechanism are neurologically plausible. We make no claims

about the neurological plausibility of these mechanisms, but this might be worth

investigation.
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A B C D
FFFFFFFF 1112 1155 0 0

FFFFFFFT 383 380 0 129

FFTFFFFF 243 158 0 0

FFTFFFFT 190 151 0 35

FFTFFFTF 5 1 0 0

FFTFFFTT 2 13 0 3

FFTFTFFF 133 75 0 0

FFTFTFFT 346 363 75 42

FFTFTFTT 4 4 0 2

FFTTFFTT 0 2 0 1

FTTFFFFF 1 5 0 0

FTTFFFFT 25 11 0 12

FTTFFFTF 1 0 0 0

FTTFFFTT 1 5 0 0

FTTFTFFF 7 0 0 0

FTTFTFFT 10 35 121 185

FTTFTFTT 2 6 0 8

TFFFFFFF 470 259 0 0

TFFFFFFT 1679 1014 231 171

TFFFTFFF 110 52 0 0

TFFFTFFT 714 872 2007 2155

TFFFTTFT 0 0 0 4

TFTFFFFF 110 75 0 0

TFTFFFFT 346 372 102 70

TFTFFFTF 8 1 0 0

TFTFFFTT 20 19 0 0

TFTFTFFF 103 91 0 0

TFTFTFFT 734 1341 2172 1954

TFTFTFTF 3 4 0 0

TFTFTFTT 12 21 46 23

TFTFTTFT 0 0 0 4

TFTTTFTT 0 2 0 2

TTFFTFFF 0 5 0 0

TTFFTFFT 160 246 1370 1000

TTFFTTFT 0 0 0 2

TTTFFFFF 5 3 0 0

TTTFFFFT 16 37 126 153

TTTFFFTF 6 2 0 0

TTTFFFTT 8 22 58 25

TTTFTFFF 0 3 0 0

TTTFTFFT 27 153 596 839

TTTFTFTF 0 1 0 0

TTTFTFTT 4 41 96 174

TTTTTFTT 0 0 0 7

‖A−B‖2 = 926, 354 (9.72%)
‖A−D‖2 = 9, 109, 628 (30.49%)
‖A− C‖2 = 9, 546, 816 (31.21%)
‖B −D‖2 = 5, 544, 956 (23.79%)
‖B − C‖2 = 5, 843, 940 (24.42%)
‖C −D‖2 = 301, 794 (5.55%)

Fig. 4.6. A demonstration of the utility of behavioral signatures for net-
works with similar behavior, but dissimilar structure, and vice versa. Net-
works A and B are structurally different, but behaviorally similar, as are networks
C and D. Networks C and D are structurally similar to A and B, respectively, but
have ANDs whereA and B have ORs, and are therefore behaviorally different, respec-
tively. The columns at the top-right are the behavioral signatures for the 4 networks.
The Euclidean distance (using the behavioral signatures) is shown for the 6 distances
among the networks, with the percentage of the maximum possible distance between
2 cortical regions under these parameters.
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Some of these ideas are discussed further in Subsection 8.2.3.



Chapter 5

DISCOVERY OF USEFUL MAPPINGS

When fully implemented, the parameterized mappings from Phase 2 should give

us true transformation invariances, such as translation for visual data, that chunking

and merging alone won’t produce. We do this by creating equivalence classes from the

parameters of a parameterized concept. But we still won’t have generalized relations

among feature-sets. That is, we won’t have extracted the relations themselves. For

example, we won’t have a general idea of “rotating a shape by 45 degrees”. To

find these general relations, we propose searching for mappings, which transform a

feature-set to another.

We propose that useful mappings can be found by finding mappings that allow

us to further compress our data set. In this chapter, we provide the mechanics of

mappings and we show how we find and use mappings to compress our data. We

assume that we’re given a set of conjunctions that we are told are equivalent. (This

should be the output of Phase 2.) For example, we might be told that various rotations

of the “dog” shape are the same image, as are various rotations of other shapes, as

shown in Figure 5.1. Though we know these are all instances of the same invariant

143



144

Fig. 5.1. Bags of feature-sets that we know are all the same shape, though
we don’t know the relation among the instances in a bag. Note that each
image in each bag is actually a bag of features itself.

concept, we don’t know the relation these feature-sets have with each other. Our task

is to discover relations that are consistent across bags.

Apart from the general related work discussed in Section 1.3 and the analogy

work discussed in Section 4.1, we know of no work that discovers mappings or makes

use of these mappings to reduce description length. We believe that the work intro-

duced in this chapter is novel.

5.1 The Problem of finding Mappings

In this section, we describe the problem of finding mappings. If we consider

Figure 5.1 again, we note that each image is actually a bag of features itself. To

further illustrate this, we’ve constructed a set of equivalence classes by hand that are
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Fig. 5.2. A translation invariant representation of the “dog” concept as
a bag of features. We simply tally the lines of every length and orientation. We
also “bin” the lines by rounding the segments’ length to the nearest multiple of 5.
Note that under this transformation a shape rotated 180 degrees will have the same
“signature” as the original shape.

invariant to translation and rotation. Namely, these features are the tallies of lines at

different lengths and orientations as shown in Figure 5.2. Though we’ve hand coded

these features, we assume that we will have discovered equivalence classes like these

as a product of Phase 2.

Essentially, each “invariant” feature in Figure 5.2 is a large OR as illustrated

in Figure 5.3. This shows how this type of feature might have come from Phase

2. That is, the output of Phase 2 is an ontology of ANDs and ORs. The ORs

(or equivalences classes) that are invariant to translation (and other transforms) are

found by discovering behaviorally isomorphic regions of the ontology. We assume that

this problem has been solved in starting Phase 3.

Figure 5.4 shows this representation for our bag of “dog” instances. We have a
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Fig. 5.3. A translation invariant line segment as a large OR. Each line
segment shown on the grid is actually an AND pointing to the component pixels.

similar “vector bag” for each of our other 180 shapes.

Suppose we pick a pair of instances S1 and S2 from the bag of “dog” instances,

and we want to find a mapping A such that S2 = A (S1). For this example, let’s

suppose that S1 is the “non-rotated” dog and that S2 is the dog rotated 15◦ (shown

at the right in Figure 5.4). To do this, we must first define how mappings work.

5.2 Mechanics of Mappings

A mapping is a set of ordered pairs, where each element of the pair is a feature

(primitive or higher level). For example, the mapping A from Subsection 2.2.3 (in

our overview of the the solution to building our “rickety bridge”) is the set
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Fig. 5.4. Our hand-coded invariant representation for rotations of the
“dog” shape. The top row is the feature count for the non-rotated dog shape
shown on the left. The next row is the shape rotated 15◦ (shown at right), and so
on to a rotation of 165◦. Black means that the value for this feature is 10 or above
(meaning that this feature occurred at least 10 times), and white means a feature
value of 0.

{ (000.05, 045.05), (000.10, 045.10), (000.15, 045.15), (000.25, 045.25),

(090.05, 135.05), (090.10, 135.10) , (090.15, 135.15), (090.25, 135.25) }
When we apply mapping A to a set S (denoted A (S)), we get a new set N , which

is determined by the algorithm in Table 5.1. This algorithm creates a new set N by

going over each item x of set S, if x matches the right side of a rule r ∈ A, then the

left side of r is added to N . If there is no rule in A whose left side matches x, then

x itself is added to N .

In each mapping, we assume that the 1st element of each pair is unique. Note that

N and S aren’t proper sets, but bags. That is, these data structures are unordered,

but may have duplicated elements. For example, if we apply mapping A to the set

{000.05, 000.15, 040.05, 045.05}, we get {045.05, 045.15, 040.05, 045.05}. Note that the
element 045.05 is repeated twice.
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Table 5.1. The algorithm to compute the set (A (S)) resulting from applying
the mapping A to set S. Essentially, this creates a set N , which is the mapping
A applied everywhere S has a key z0 in A. If an element x has no key in A, then the
new set simply contains the “unmapped” item x.

// We call this A (S) for short
define ApplyMapping (A,S)

let N = {}
foreach x ∈ S

if ∃z∈A s.t. x = z0
then let N = N ∪ {z1}
else let N = N ∪ {x}

return N

5.3 What Makes a Useful Mapping?

Now that we’ve defined how mappings behave, we return to our example problem:

finding a mapping A such that A (S1) = S2. Now, we can see that there are many

possible mappings. For example, there are 10 features in S2 that have a count of 4.

(Due to anti-aliasing “noise”, there are only 5 features in S1 that have a count of 4.)

This means that if a feature in S1 maps to any one of these 10 features in S2, it could

just as equally map to any of the others. Therefore, we need a further constraint on

what mapping we want. We need a metric that gives the utility for a mapping.

As we’ve been doing, we use the Minimum Description Length principle, and we

define a mapping’s utility as how much it allows us to compress our data set. This

means it’s never worthwhile to define a mapping over 2 instances of just one shape1,

because it will take more bits to define the mapping than will be saved by using it.

1Here, we use the term “shape” for clarity with our example. However there is nothing about
this algorithm that’s particular to images or shapes. The more general term would be “invariant
class”.
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Table 5.2. The algorithm to compute Description Length gain (DLgain).

// The gain from using mapping A to describe feature bag Y using another feature bag Z.
// X is also a feature bag where X = A (Z).
define DLgain (X,Y )

let gain = 0
// We gain the cost of expressing Y .
for k ∈ Ys

let gain = gain+ Y (k)
// But we have to pay for the differences between X and Y .
// Here, we define Y (k) = 0 if k /∈ Ys and X (k) = 0 if k /∈ Xs

for k ∈ Xs ∪ Ys

let gain = gain− |Y (k)−X (k)|
return gain

Instead, we must use the mapping for several shapes. For example, the mapping that

essentially rotates a shape 45◦ is useful for all 3 shapes in Figure 5.1.

Given a mapping A, we define its utility for a pair of instances of a shape S1, S2

as the savings in description length by using A (S1) to express S2. If no savings is

gained, we simply use S2 itself and we have a description length gain of 0.

If X is the result of applying mapping A to a feature bag Z, then we define the

Description Length gain (or DLgain) by the algorithm in Table 5.2. Essentially, if

we have Y “inherit” from X , we no longer have to express every item of Y . X might

have some differences from Y , and these differences come at a cost. This is what the

algorithm computes. Remember that a feature may occur multiple times. We use the

notation X (k) to be the number of times that feature k occurs in X . We also define

Xs to be the set created from X , which has only 1 of each item from X .

This algorithm essentially assumes that Y has been “paid for” by X , then com-

putes the expense (in terms of what must be added or deleted) of changing X to turn
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it into Y .

Using DLgain, we define the utility U of using mapping A on shape instance S1

to express shape instance S2 as

U (A, S1, S2) = max(0, DLgain (A (S1) , S2))

We apply the mapping everywhere that doing so yields description length savings,

so the total utility of our mapping A is this savings minus the cost to specify the

mapping (which is twice its length since it specifies 2 items per entry). Formally, if

C is our set of invariant classes (or shapes in our running example), this is

U (A) = −2 |A|+
∑

S∈C

∑

S1,S2∈S×S

U (A, S1, S2)

This utility function makes sense for the shapes domain. Note that all our

mappings are multiples of 15◦. Therefore, a mapping that’s not a multiple of 15◦

shouldn’t be that useful. Figure 5.5 shows the utility gains for mappings of various

degrees.

5.4 Searching for Mappings

Now that we have our utility function for what makes a good mapping, we want

to search over this space to maximize this function. This space is large, so a blind

search might be inefficient.
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Fig. 5.5. The scores (essentially description length savings) for hand-coded
“rotation” mappings. Since our data all are rotations of multiples of 15◦ of each
other, rotations that aren’t a multiple of 15◦ won’t be as useful. These mappings
aren’t completely useless though because of anti-aliasing “noise”. For example, the
“Rotate 55◦” mapping still places a lot of its rotations to around 60◦, which is what
these features may have been set to due to noise. The Rotate90◦ mapping has an
especially high score because this rotation has almost no anti-aliasing noise.
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Our search is doubly hard. Suppose we grab instances S1 and S2 from the bag

of “dogs”. Further suppose an oracle told us that the mapping from S1 to S2 is the

same as the mapping from T1 to T2 and from R1 to R2, where T1, T2 are instances

from a different bag and R1 and R2 are instances from yet another bag. At this point,

it’s still not trivial to find a mapping that best maps all these pairs. But our problem

is even more difficult because we don’t have an oracle telling us what shape T1 maps

to under the same transformation.

Our current algorithm seeks to maximize compression by searching over map-

pings in a 2 phase iterative process. Our first phase is finding a mapping given a

pairing between instances of shapes. Starting with a randomly chosen shape S, we

arbitrarily choose 2 instances of that shape S1 and S2. For these 2 instance, we do

a “best match” among the features. We do this by constructing a bipartite graph

and then doing bipartite graph minimization. To construct the graph, each “node”

represents a feature in S1 or S2, where node Ni,j corresponds to feature j of Si. If

S1 and S2 have a different number of features (as they do for our representations in

Figure 5.4), then we “pad” the smaller feature-set with new features with frequency

values of 0. We create an edge between every pair of nodes N1,i and N2,j where the

value of this edge is the difference in the frequencies of the respective features. That

is Ei,j = |S1,i − S2,j|. We then run a standard bipartite graph matching algorithm

to minimize the sum of the values over the chosen edges. This matching generates a

mapping, where we map from feature i to j if edge Ei,j has been chosen. Then we

enter our second phase, which is adjusting our pairings among the instances of our

shapes. Starting with this “seed” mapping M , for every other shape T , we search

over all pairs of instances in T to get T1 and T2, where DLgain (M (T1) , T2) is max-

imized. Using this pairing for the rest of the shapes, we find another matching by
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constructing another bipartite graph. This time, the value of each edge is given as

Ei,j =
∑

R∈shapes |R1,i − SR,j |. We then construct a new mapping using the bipartite

matching minimizing algorithm as described as before. Using the new matching, we

readjust our pairing and we repeat until convergence or until a maximum number of

iterations is exceeded.

We ran this search algorithm on our rotated object data. There were 181 shape

types at 12 orientations each, for a total of 2,172 shapes. Our algorithm was told

what shape type each instance was, but not the orientation (which is the output

we’d hope to get from Phase 2). Using this algorithm, we successfully discovered

the 12 transformations and the pairs of instances for each shape type for which these

mappings apply.

Figure 5.6 shows the comparison of these discovered mappings to our hand-coded

mappings from Figure 5.5. The mappings discovered by our system were competitive

with the hand-coded mappings in terms of description length savings, outperforming

the hand-coded mappings in all instances but 2. Note that the “between” angle

rotations (such as 5◦) were never discovered by our algorithm because these rotations

didn’t yield any further compression on our dataset once we have the multiple-of-15◦

rotations. This is because the differences of angle in the instances of a shape in our

data were always multiples of 15◦. It’s possible that the hand-coded mappings have

too much overhead. For example, they encode how to rotate a line of length 30, when

lines of these lengths are rare in our images.

For illustration, part of the discovered 90◦ mapping is shown in Table 5.3. For the

most part, this matches with our hand-coded mapping. For example, this mapping

converts a line of length 5 at orientation 0◦ to a line of length 5 at orientation 90◦.
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Table 5.3. Part of the 90◦ mapping discovered by our algorithm.

000.05 → 090.05 005.05 → 095.05

000.10 → 090.10 005.10 → 095.10

000.15 → 090.15 005.15 → 095.15

010.05 → 100.05 015.05 → 105.05

010.10 → 100.10 015.10 → 110.10

010.15 → 150.15 015.15 → 035.10

045.05 → 135.05 175.05 → 085.05

045.10 → 135.15 175.10 → 085.10

045.15 → 060.30 175.15 → 085.15

Our search had some mistakes. For example, 010.15 should have been mapped to

100.15, not 150.15. We suspect that this is because of the relative rarity of lines of

length 15.

For illustration, the table below shows the results of a 45◦ “rotation” for the

“dog” shape from Figure 5.4. The leftmost column is the list of features. The 2nd

column is the respective feature values for the original shape (shown at the left of

Figure 5.4). The 3rd column is the features values for the dog shape rotated 45◦. Also

shown are these feature values resulting from applying our hand-coded and discovered

mappings for a 45◦ rotation shown with along with the mapping and the error for

each feature in terms of number off from the actual rotated shape. The total sum of

squared error is shown in the final row, with our discovered mapping having a slightly

lower total error than the hand-coded rotation.
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Original Actual Hand-coded Discovered
Feature (Rot. 0◦) Rot. 45◦ Map Val Err Map Val Err
000.05 1 2 → 045.05 2 0 → 045.05 2 0

000.10 2 0 → 045.10 0 0 → 045.10 0 0

000.20 2 0 → 045.20 0 0 → 045.20 0 0

005.05 5 2 → 050.05 2 0 → 040.05 2 0

005.10 4 0 → 050.10 0 0 → 065.05 0 0

010.05 13 5 → 055.05 1 +4 → 035.05 2 +3

015.05 4 5 → 060.05 3 +2 → 025.05 3 +2

020.05 2 2 → 065.05 2 0 → 070.05 2 0

025.05 4 12 → 070.05 3 +9 → 050.10 4 +8

030.05 2 15 → 075.05 5 +10 → 075.05 5 +10

035.05 1 12 → 080.05 12 0 → 095.05 13 -1

035.10 0 1 → 080.10 0 +1 → 080.10 0 +1

040.05 1 5 → 085.05 5 0 → 085.05 5 0

040.10 0 2 → 085.10 4 -2 → 170.10 1 +1

040.15 0 2 → 085.15 0 +2 → 040.15 0 +2

045.05 1 1 → 090.05 1 0 → 090.05 1 0

045.10 0 2 → 090.10 2 0 → 085.15 2 0

045.20 0 2 → 090.20 2 0 → 155.10 2 0

050.05 2 5 → 095.05 5 0 → 080.05 4 +1

050.10 0 1 → 095.10 4 -3 → 000.10 4 -3

050.15 0 2 → 095.15 0 +2 → 030.15 0 +2

055.05 1 9 → 100.05 13 -4 → 055.10 12 -3

055.10 0 2 → 100.10 0 +2 → 055.10 1 +1

060.05 1 17 → 105.05 4 +13 → 105.05 5 +12

065.05 1 11 → 110.05 2 +9 → 130.10 4 +7

070.05 4 3 → 115.05 4 -1 → 110.05 2 +1

075.05 8 2 → 120.05 2 0 → 115.05 2 0

080.05 8 1 → 125.05 1 0 → 145.05 2 -1

085.05 8 1 → 130.05 1 0 → 140.05 1 0

090.05 4 1 → 135.05 1 0 → 135.05 1 0

090.10 1 0 → 135.10 0 0 → 140.10 0 0

090.15 2 0 → 135.15 0 0 → 135.10 0 0

095.05 6 1 → 140.05 2 -1 → 150.05 1 0

095.10 2 0 → 140.10 0 0 → 130.05 0 0

100.05 8 1 → 145.05 1 0 → 120.05 3 -2

105.05 4 3 → 150.05 1 +2 → 155.05 1 +2

110.05 2 2 → 155.05 1 +1 → 160.05 4 -2

115.05 3 3 → 160.05 4 -1 → 100.05 8 -5

120.05 3 8 → 165.05 8 0 → 165.05 8 0

125.05 2 6 → 170.05 8 -2 → 005.05 0 +6

130.05 2 7 → 175.05 8 -1 → 010.05 2 +5

130.10 0 0 → 175.10 0 0 → 015.10 1 -1

135.05 2 4 → 000.05 4 0 → 000.05 4 0

135.10 0 0 → 000.10 1 -1 → 000.15 2 -2

135.15 0 0 → 000.15 2 -2 → 135.15 0 0

140.05 2 8 → 005.05 6 +2 → 175.05 8 0

140.10 0 0 → 005.10 2 -2 → 125.15 1 -1

145.05 1 6 → 010.05 8 -2 → 040.10 8 -2

150.05 3 6 → 015.05 4 +2 → 170.05 6 0

155.05 2 5 → 020.05 2 +3 → 020.05 4 +1

160.05 3 1 → 025.05 3 -2 → 015.05 2 -1

165.05 5 2 → 030.05 3 -1 → 060.05 3 -1

170.05 12 3 → 035.05 2 +1 → 055.05 3 0

175.05 5 1 → 040.05 2 -1 → 030.05 2 -1

175.10 4 0 → 040.10 0 0 → 050.05 0 0

∑

Err2 543 515

5.5 Discussion

The process of using mappings is another mechanism for compressing feature-set

data. Although we’ve used the process here on output from Phase 2, we can use it

anywhere we have sets of feature-sets that are known to be equivalent. Furthermore,

the mappings we found that best compress our data for a rotated image domain are
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those that correspond to rotations, which is what we assume a person would use for

describing this domain. So we argue that compression is a good metric for finding

mappings that correspond to what a person might use.



Chapter 6

APPLES TO ANGLES AND THE

MACGLASHAN TRANSFORM

This chapter outlines the final phases of the bridge, but a full investigation of

the ideas in this chapter are the subject of future work.

As discussed in Subsection 2.2.4, we’d like to characterize the mappings that

we learned in Phase 3. Recall in Figure 2.12 that we want to generate “graphs” for

the behavior of mappings. Essentially, we want to have mechanisms that allow us to

discover and exploit the fact that part of our theory of angles is isomorphic to part of

our theory of apples. The process of generating graphs for the behavior of mappings,

then finding and exploiting isomorphisms in these graphs is Phase 4. To do Phase 4,

we must answer the following Questions:

1. How do we get the behavior of our mappings?

2. How do we represent the mappings’ behaviors as graphs?

3. How do we segment these graphs to give graphs for different types of mappings?

158
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(For example, how do we separate Rotation transforms from Translation trans-

forms, since they both operate on the same type of data?)

4. How do we find isomorphisms among the behavioral graphs for different map-

pings?

5. How do we use these isomorphisms once we find them to compress our data

(and to generalize and to transfer knowledge)?

Phase 5 is the process of representing graphs, particularly behavioral graphs, as

feature-sets, then using Ontol to create an ontology of these graphs on which we can

do recognition and inference. The process of turning a graph into a set of features is

called “The MacGlashan Transform”.

6.1 Related Work

For the general idea of characterizing behavior of mappings for a system, we

know of little related work aside from the work on analogy that we reviewed in 4.1.

For the MacGlashan Transform, the idea of representing large graphs as feature-

sets is not novel. For example, (Shervashidze et al. 2009) and (Przulj 2007) both

represent graphs by sampling small connected sub-graphs called “graphlets”, putting

the graphlets into a canonical form (at exponential cost in the size of the graphlet,

which is usually small to make this feasible), then representing the graph as a distri-

bution over the graphlets. This distribution is called the “kernel” of a graph. Using

these kernels, they are able to quickly estimate whether two large graphs are isomor-

phic. This distribution is essentially a feature-set, and we borrow heavily from these
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ideas. However, no one we know of has taken the next step: creating an ontology of

graphs by chunking and merging these feature-set representations of graphs.

6.2 Building and Using “Behavioral” Structures

In our running example, the intuition behind the answer to Question 1 —how we

get the behavior of our mappings— is that we want to “play around” with rotations

to generate a structure of relations between rotations. We learn rules, such as that

if we apply Rotate5 to a feature-set, then apply Rotate40, we get roughly the same

result as if we applied Rotate45.

The basic idea is that our nodes are “tagged” sets of features (where each item

has a unique tag), and our edges are mappings. These feature-sets come from the

mappings themselves. That is, the feature-sets will be all the features to which a

mapping applies, or the domain of the mapping. For example, suppose we have the

3 mappings below (where Mappings A, B, and C correspond to 30◦, 60◦, and 90◦

rotations, respectively):



161

Mapping A Mapping B Mapping C

000.05 → 030.05

000.25 → 030.25

030.05 → 060.05

030.25 → 060.25

060.05 → 090.05

060.25 → 090.25

090.05 → 120.05

090.25 → 120.25

120.05 → 150.05

120.25 → 150.25

150.05 → 000.05

150.25 → 000.25

000.05 → 060.05

000.25 → 060.25

030.05 → 090.05

030.25 → 090.25

060.05 → 120.05

060.25 → 120.25

090.05 → 150.05

090.25 → 150.25

120.05 → 000.05

120.25 → 000.25

150.05 → 030.05

150.25 → 030.25

000.05 → 090.05

000.25 → 090.25

030.05 → 120.05

030.25 → 120.25

060.05 → 150.05

060.25 → 150.25

090.05 → 000.05

090.25 → 000.25

120.05 → 030.05

120.25 → 030.25

150.05 → 060.05

150.25 → 060.25

If we start with Mapping A, then our tagged feature-set will be a set of attribute-

value pairs, where the first item of each pair will be from the domain of Mapping A,

and the value will be a gensym created by attaching an “o” (for “original value”) to

the first item. So, our initial tagged feature set will be the following attribute-value

pairs:

Pairs (A) =

{ 000.05 = o.000.05, 000.10 = o.000.10,

030.05 = o.030.05, 030.10 = o.030.10,

060.05 = o.060.05, 060.10 = o.060.10,

090.05 = o.090.05, 090.10 = o.090.10,

120.05 = o.120.05, 120.10 = o.120.10,

150.05 = o.150.05, 150.10 = o.150.10 }

Note that our tags are the original values for each feature. This allows us to keep

track of what becomes of each feature. Furthermore, if o.000.05 is the original count

for the number of times 000.05 appeared in a feature-set, then we can use this for
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calculating the number of times a feature occurs in a mapped feature-set. When we

apply mapping A to this tagged set, we get the tagged set

A (Pairs (A)) =

{ 000.05 = o.150.05, 000.10 = o.150.10,

030.05 = o.000.05, 030.10 = o.000.10,

060.05 = o.030.05, 060.10 = o.030.10,

090.05 = o.060.05, 090.10 = o.060.10,

120.05 = o.090.05, 120.10 = o.090.10,

150.05 = o.120.05, 150.10 = o.120.10 }

If we apply Mapping B on the same initial set, the resultant feature-set will be

B (Pairs (A)) =

{ 000.05 = o.120.05, 000.10 = o.120.10,

030.05 = o.150.05, 030.10 = o.150.10,

060.05 = o.000.05, 060.10 = o.000.10,

090.05 = o.030.05, 090.10 = o.030.10,

120.05 = o.060.05, 120.10 = o.060.10,

150.05 = o.090.05, 150.10 = o.090.10 }

So our graph for applying these mappings will be as shown in Figure 6.2. This

Figure also shows how we might answer Question 2: how we represent the map-

pings’ behaviors as graphs. In this figure, each node represents a particular setting

of attribute-value pairs, the edges represent our 3 transformations: A, B, and C.

We can make some inferences from this graph. For example, we see that mapping

C is its own inverse. We see that mapping A applied twice is the same as applying

mapping B once. We might want our algorithm to infer that A is a “more primitive”

mapping than B or C because multiple applications of A can yield the same result as

a single application of B or C, but not vice versa. Thus, A might become a candidate

for a primitive mapping operation.
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Fig. 6.1. Behavior of mappings represented as structure. We show 3 mappings
A, B, and C corresponding to rotation by 30◦, 60◦, and 90◦, respectively. The nodes
correspond to the settings for the attribute-value pairs for features on which these
operations operate. The top node corresponds to the tagged feature-set that we
constructed to get Pairs (A). In a real example, this would be only part of the
graph. We’d also have other mappings such as translation and scaling, in addition to
other rotations.
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The graph in Figure 6.2 is exhaustive for the 3 mappings, but on a real example,

we’ll likely have many more mappings, and the domains and ranges of these mappings

won’t necessarily be the same. So in real life examples, we won’t always afford to

be exhaustive. Thus, the graphs need to be created by “sampling” the behavior of

the mappings. How to do this sampling —for example, randomly vs. based on input

data— is an open question which we leave to future work.

In a real life example, the graph in Figure 6.2 would be connected to a much

larger graph, so we need to address Question 3, how we segment these graphs. One

approach would be to apply the SUBDUE system (Holder, Cook, & Djoko 1994),

which finds frequently occurring subgraphs in a larger graph. If successful, this would

also address Question 4, how we find isomorphisms in the “behavior of mappings”

graph. Applying a SUBDUE-like algorithm is also the subject of future work.

This leaves Question 5, which asks how we might use these isomorphisms once

we find them. The answer to this falls into 2 main categories:

Compression As in Phase 2, if we see that we have mappings that are essentially

the same (or have isomorphic components), then we can represent these com-

monalities once instead of having to repeat them each time.

Generalization and Transfer of knowledge For example, if we develop a gisty

theory of number, then we can apply this knowledge when we see new data.

An example of this would be learning about distances. Just a few samples

will suggest that distances behave like other quantities, and we can then test

this hypothesis. Then we can quickly make inferences about distances without

having to first redevelop a theory of number for distances.
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6.3 The MacGlashan Transform: Representing Relational Structures as

Feature-Sets

The MacGlashan Transform is left to future work, but here we describe the

possibilities if we’re able to represent relational structures as feature-sets.

The feature-set graphlet kernels of (Shervashidze et al. 2009) and (Przulj 2007)

both show that this representation of graphs is possible. Conceivably we can store our

relational structures in “kernel” space. That is, we can use Ontol on these feature-

sets to create an ontology of graphs for efficient storage, and for doing inference on

graphs. We can also create a “Reverse” Transform, which converts feature-sets back

to relational structures. This might be a constraint satisfaction search problem: given

a hash, search for what structure produced the hash.

Representing graphs as feature-sets essentially uses the same trick that we use in

representing “dog” as a collection of ANDs and ORs: namely, the use of overlap to do

binding. The concept of a dog is a relational structure. We have dog-neck which is a

relation between dog-body and dog-head. We never explicitly state that a particular

dog-head is the same head that the dog-neck binds to, but it’s hard to find a different

head that fits these constraints.

The benefit of having this transform is that it allows us to represent a huge

variety of concepts as feature-sets because such as large variety of knowledge can be

represented as graphs. Then, if we have an efficient Ontol system, we can use this

system to do learning and inference on almost any kind of knowledge.
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6.4 Meta-Cognition: Feeding the Dragon its Tail

There’s a lot to be said about Meta-Cognition, so we won’t say much here. With

just a few added mechanisms, we propose that we might be able to have some metacog-

nitive properties, such as having our search algorithm develop its own heuristics. The

overview for how this might be done is this:

1. We represent the search processes itself as feature-sets.

2. We use Ontol to chunk and merge these feature-sets. This should generate

common search patterns and find common waypoints in searches.

3. Then we apply the patterns Ontol finds to our new searches.

If our feature-set representation is truly general, then we can express our working

memory (for searches) in the same language as we do our regular memory.

Ideally, this process will generate “macros” analogous to the lemmas that humans

develop while proving theorems in geometry. For example, imagine if a person were

to run Conway’s Game of Life by hand. Doubtless, a person would create all sorts of

cognitive shortcuts. For example, if a “glider” got to an open spot, the person would

probably not bother doing the calculation for each step of the glider, but would rather

correctly predict that the glider would be t
4
cells to the right and t

4
cells down in t time

steps. (With today’s algorithms, the computer is blindly simulating the glider, it’d

have no conception of what a glider is.) Ideally, we’d want the computer to recognize

these computational shortcuts also.
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We’ve only scratched the surface of this idea. A fuller investigation will be the

subject of future work.

6.5 Discussion

We’ve shown a proof of concept of how relational theories might be represented

as feature-sets, and how we might create a general gisty theory of “quantity”, and

finally complete our bridge from raw sensor data to such a rich theory. There is a

good deal of overlap between Phase 4 and Phase 2. Both Phase 4 and Phase 2 extract

and parameterize similarities in behavioral. Ideally, we’d like to unify much of Phase

4 and Phase 2, and have Phase 4 be just a few added mechanisms such as generation

of “behavioral” data and representing the data as feature-sets.

There is yet much work to be done on this bridge, and on Artificial Intelligence

in general. We discuss this future work in the remaining chapters of this dissertation.



Chapter 7

WHAT’S LEFT FOR AI?

Let an ultraintelligent machine be defined as a machine that can far

surpass all the intellectual activities of any any man however clever. Since

the design of machines is one of these intellectual activities, an ultraintel-

ligent machine could design even better machines; there would then un-

questionably be an “intelligence explosion”, and the intelligence of man

would be left far behind. Thus the first ultraintelligent machine is the last

invention that man need ever make, provided that the machine is docile

enough to tell us how to keep it under control. It is more probable than

not that, within the twentieth century, an ultraintelligent machine will be

built and that it will be the last invention that man need make.

–I. J. Good (Good 1965)

Solving The AI Problem—creating a machine that’s unquestionably “intelligent”

on the same level or above a human being— would be a mark in human history to

rival the advent of agriculture, writing, printing, and powered flight. In this chapter,

we discuss a set of open problems for Artificial Intelligence and how we can extend

168
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the work discussed in this dissertation to achieve this goal.

7.1 Open Problems for AI

In (Pickett, Miner, & Oates 2007) and (Pickett, Miner, & Oates 2008) we discuss

a set of open problems for Artificial Intelligence. These are problems for which we

believe even conceptual solutions are currently weak. We list some of these problems

here.

These problems are meant to be intuition pumps. They are meant to point

out shortcomings of current techniques in AI, and stimulate algorithms for how these

problems might be addressed. These particular problems were chosen because they’re

feats that people can do easily, but for which we know of no work that says how a

computer can solve them even in principle. We hypothesize that progress on these

problems will significantly advance the state of research on Artificial General Intelli-

gence.

7.1.1 The 3D Pen Problem

In his Allegory of the Cave (Plato 360 BC), Plato describes a group of people

whose observations of the world are solely shadows that they see on the wall of a

cave. The question may arise as to whether these observations are enough to propose

a theory of 3-dimensional objects. In principle, this problem can be solved. If an agent

is given a representational framework that’s expressive enough to encode a theory of

3-dimensional objects, then the agent could go through the combinatorially huge
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number of theories expressed in this language (under a certain length) and choose the

one that best explained the data (where “best” can be defined in terms of Ockham’s

Razor (or The Speed Prior, described in Subsection 8.2.1)). The best theory will likely

include a description of 3-dimensional objects (assuming such a theory is of unrivaled

utility for characterizing the data). Thus, our task is possible, given an exponential

amount of time. There are other real examples of building theories of phenomena

that aren’t directly observable: neither atoms, genes, radio waves, black holes, nor

multi-million year evolutionary processes are directly observable, yet scientists have

built theories of these.

A robot given sonar sensor data (or uninformed visual data) is faced with fun-

damentally the same problem. Visual observations of a 3-dimensional object, such

as a pen, can be very different (in terms of raw sensor data) depending on whether

the pen is viewed lengthwise or head on. Therefore, the ability to propose “scientific

theories” of this type is something a cognitive architecture should be able to explain.

The architecture’s representation framework needs to be expressive enough to encode

such theories, and the architecture’s model-builder should be able to discover theories

in polynomial time.

A similar approach can be used to create causal theories from observational data

(Pearl 2000). Statisticians point out that it’s impossible to prove causality from

observational data. This is true, but we can use our “theory language” to propose

causal theories that are more likely than others.

We view this as being fundamentally the same problem as developing a theory of

Euclidean Geometry (given various theorems, posit a small set of axioms that produce

the axioms), molecular chemistry (given various interactions, posit the existence of
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atoms (and how they work)), or basic genetics (given plant phenotypes, posit the

existence of genes).

7.1.2 Green Glasses

When a person dons a pair of green-tinted sunglasses for the first time, they

have little trouble adapting to their altered visual input, but this isn’t such a trivial

task for a (visual) robot. In terms of raw sensor data, a green-tinted scene has very

different values from the same scene in its natural color. We suspect that this is

because people have abstract representations that are invariant of the instances that

caused them. Representations developed from visual data should also be invariant

to translation, rotation, and scaling. These invariant representations aren’t limited

to visual data. A stenographer can hear different speakers say the same phrase in

different pitches, volumes, and speeds, yet produce the same transcription.

7.1.3 RISK

We claim that there exist concepts that people form naturally, yet are not handled

by existing concept discovery systems. For example, consider the strategy game

“RISK”. The map in Figure 7.1 shows 6 Continents, each of which are subdivided

into areas, which we’ll refer to as Territories. The goal of this game is to dominate

the map by controlling all the Territories. At any point in the game, each Territory

is controlled by only one player, and a player can gain control of other Territories

by invading from neighboring Territories that they already control. Every Territory

that a player controls has one or more Armies stationed there. The odds of an
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invasion being successful increase with the number of Armies stationed in the invading

Territory, and decease with the number of Armies in the defending Territory. Players

receive a Continent Bonus (in the form of extra Armies at the beginning of their turn)

for controlling all the Territories of a Continent.

When people play RISK, they generally develop the concept of what might be

called a “Border Escalation”. An example of this concept would be what often hap-

pens when one player controls the Continent of North America, and another player

controls South America. In this case, both players place many Armies on their re-

spective “Border Territories” (namely Central America and Venezuela) while keeping

few Armies on the “Interior Territories”. Placing Armies on the Border Territo-

ries strengthens a player’s defense against invasion (and therefore helps ensure that

player’s Continent Bonus), but also acts as a threat to the other player’s Continent

Bonus. Therefore, the other player adds more Armies to their Border Territory, and

the process escalates. An analogous similar process is also often seen in between Siam

and Indonesia. Thus, the relationship between Siam and Indonesia is analogous to

the relationship between Central America and Venezuela, even though Indonesia and

Venezuela are almost as different as two Territories can be in RISK. Note that when

people play RISK, this concept is unsegmented. That is, no one separates out the

Border Escalation that occurs between Siam and Indonesia; it’s integrated with the

rest of the game-play. People readily form other concepts while playing RISK. For

example, the general idea of a “border” and expansion of controlled Territories, a

“cascade” where one player’s dominance will propel itself, and the case where one

player tries to weaken another by invading only a single Territory in the other’s Con-

tinent. These concepts allow us to concisely characterize games of RISK. Most of

these concepts are still useful for describing games played on an alternate map (e.g.,
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Fig. 7.1. “Border Zone”: A concept formed by analogy in RISK. Siam
is to Indonesia as Central America is to Venezuela. The Continents are shown as
contiguous regions of same-colored Territories.

of a hypothetical world with different Territories and Continents). This generality

is useful for transfer of learning. We argue that many of these concepts are difficult

even to represent with existing approaches, much less discover. Note that one need

not take actions to form these concepts. They can be formed merely by observing

others playing RISK, and this unsupervised approach is what we will be focused on.

7.1.4 The Smashed Banana Problem

In search, there is also “The Smashed Banana Problem”. Suppose we’re cooking

supper for people, and we’re thinking about how to make the noodles not stick to-

gether. We’re searching through possible scenarios, and possible actions we can do.

One possible action we could take is to smash a banana against our forehead. We
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would guess that this branch is never even brought up to be evaluated (to see if we

should search it) since even if it only takes a millionth of a second to discard, there

are still billions of branches. Of the possibly infinite number of actions we could do,

how do only the “most sensible” ones come to mind?

One alley to look for a solution to The Smashed Banana Problem is connec-

tionism. This is where associations are built betwixt various semantic areas. One

need only follow connections to have a finite number of possible branches on which

to search. There is also hierarchical connectionism (or frames and rule inheritance).

The basic idea behind hierarchical connectionism is that there are rules over a

general class of objects/phenomena/whatever and that these rules are inherited by

members of the class. For example, suppose you want to flatten a piece of wood. You

can realize that wood is in the class of hard materials. Hard materials require forceful

actions. Forceful actions usually require hard materials, and, more specifically, usually

tools. Now there are only so many tools that work with wood, and there are only so

many possibilities to consider.

7.1.5 Specifying Reward: The Tomato Harvester

“And how will you inquire into a thing when you are wholly ignorant

of what it is? Even if you happen to bump right into it, how will you

know it is the thing you didn’t know?”

–Meno’s Paradox, from Menon III of Pharsalus (Plato 387 BC)

An agent should be able to plan and take actions to attain a (possibly externally

specified) goal, and an architecture will have to address how goals are specified. This
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is non-trivial for a robot baby because it’s born with a minimal model of the world

and therefore, no “language” to express what should cause a reward. Furthermore,

we shouldn’t rely on any particular sensor modality to specify the reward. That is,

the specification of the reward should be invariant to the raw sensor data.

Human brains seem to have solved this problem. For example, the majority

of male humans seem to be innately attracted to women, and vice versa. From a

computational standpoint, telling the difference between a man and a women is far

from trivial. The attraction seems to be invariant to any single modality: most people

either blind or deaf from birth still follow this pattern.

An approach to solving the problem is given in the following example: Suppose

we wanted a robot’s innate goal to be to harvest tomatoes. Furthermore, we wanted

the robot to harvest only proper tomatoes (ripe, but not over-ripe, not too small, or

insect infested, etc.), and we don’t know what its sensor suite will be. (In practice, we

might “teach” the robot as we would with a human, but this example is for illustrative

purposes.)

To do this, we could build several robots with widely ranging modalities, and

have them (over several months) experience the environment of the tomato fields.

From this experience, the robots should have built a world model that would include

a “tomato taxonomy”. Then, we can find an invariant representation of a “good

tomato” by noting what parts of their ontologies are “active” when they have ex-

periences with good and bad tomatoes (analogous to what some neuroscientists do

to localize various cognitive functions in humans in fMRI studies). Specifically, we

could find an invariant representation for the act of harvesting good tomatoes. We

can then put this in an agent’s “innate” model, and specify that it’s a goal. Then,
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when developing representations, the agent should discover a representation that is

similar (or perhaps isomorphic to) the representation of this goal.

7.1.6 Story Summarization

People seem to be good at summarizing stories. For example, suppose Tim

watches an animated movie called “The Boy Who Wanted to be a Bear”. With

seemingly little effort, he might summarize the story like this:

The story takes place in Alaska or Northern Canada, wherever polar

bears and Eskimos live. There’s a polar bear couple who loses their cub,

so they go into the human village and kidnap a human baby boy. They

then raise the baby. When the baby grows up, he decides he wants to be

a bear. Then some magic stuff happens, and the boy becomes a bear.

A few things to note about this summary:

• Tim summarized the story with seemingly little effort.

• Tim never went down to the pixel level. He never said what color hair the baby

had.

• There are a few specific events (such as going into the village and kidnapping

the baby), and there are much broader events (such as raising the baby).

• Tim never explicitly mentioned that the bears raised the baby as a bear (and

not a human), but we can only imagine that this was the case given that the
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bears were trying to replace their cub (and that the boy ended up wanted to be

a bear).

We suspect some of this will be doable if we can represent relational data as

feature-sets and then throwing the feature-sets into a system like Ontol. If we can

represent stories as a collection of relations (facts), then we can extract out what facts

are common among multiple stories, so we might be able to come up with abstract

relational concepts such as “raising a baby”. We suspect Ontol will have to use its

mechanism for parameter binding. This binding will probably be lazy. For example,

we might not initially think about the manner in which the bears raised the baby

initially, so we might bind this later, after we deduced it.

If we pump out a behavioral signature for Tim’s summary of the boy who wanted

to be a bear, this should be similar to the signature for the “pixel-level” story. (Or

the same way that the higher-level node representing an invariant “dog” summarizes

the actual pixel-level dog even though information is lost.)

7.1.7 Emergent Phenomena: Traffic Jams and Conway Gliders

Emergent phenomena are of particular difficulty for existing concept formation

algorithms. For example, a particularly tricky problem is to discover a representation

of a traffic wave. That is, given a bird’s eye view of a simulation of automobile traffic

on a highway, a person can readily point out where the traffic jams are. A traffic jam

is different from a collection of cars. Individual cars move in and out of a traffic jam,

and the jam itself usually moves opposite the direction of traffic. A person could also

create features to describe the traffic waves: e.g., its spread and how fast it’s moving.
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Time

1 ....4....4...10.1.....3....4......5....1000......3

2 ...4....4...30.1..2.......4.....5.....4000.1......

3 .......4...300...2...3.........5.....5000.1.1.....

4 ..........300.1.....3....4..........5000.1.1..2...

5 ..........00.1.1.......3.....4......000.1.1..2...3

6 ...4......00..1..2.........4......5.00.1.1..2...3.

7 ..4.....5.0.1...2...3...........5..10.1.1..2...3..

8 .4.....50..1..2....3....4.........20.1.1..2...3...

9 4.....500....2..2......4....4.....0.1.1.1....3....

10 .....500.1.....2...3.......4.....5.1.1.1..2.....3.

11 ..4..00.1..2......3...3.........5.1.1.1..2...3....

12 ....20.1..2...3......3....4......1.1.1..2...3....4

Fig. 7.2. The traffic simulation. Each number represents the speed of a car
(moving to the right), and each dot (.) represents an empty space in the road (which
loops around from the right to the left). For example, at time 1, the car represented
by a 3 at the right has a speed of 3, and is the same car that is represented by a 4

(since it accelerated) at the 4th spot from the left at time 2. A car accelerates 1 spot
per time step per time step until it reaches its maximum speed of 5, or until it would
run into a car in front of it, at which point it reduces its speed to 0. In these 12 steps
of the traffic simulation, we can see two distinct traffic jams, which individual cars
move into and out of.

One of the simpler systems that exhibits emergent phenomena is the traffic model

of Nagel and Schreckenberg (Nagel & Schreckenberg 1995). In this model, one of the

first emergent concepts one notices is traffic jams. An example of this model is

shown in Figure 7.2. In this model (a one dimensional cellular automaton), cars are

represented by numbers which indicate their speed. At each time step (going from

top to bottom), a car moves its speed to the right unless that would mean colliding

with a car in front of it, in which case the car moves as many spaces as possible,

then reduces its speed to 0. If after moving there are no cars in front of it, the car

increments its speed by 1, up to a maximum of 5. The cellular automaton is circular

such that if a car moves off the right end, it continues to the left end.

Note that this model is fully observable and deterministic, and the underlying
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dynamics are also known. This is in contrast to many real systems, such as automobile

traffic in Los Angeles, where the underlying dynamics are not known completely. For

the deterministic model, forming concepts gives us no additional predictive power

if computation time is not a factor. Thus we conclude that one of the benefits of

forming concepts is characterization of a system at a lower computational cost. This

is support for The Speed Prior, which we describe in Subsection 8.2.1.

In the traffic example in Figure 7.2, there are two traffic jams. These traffic jams

have several characteristics that are not present in any of the cars or “snapshots” of

all the cars. For example, although traffic is moving to the right, the traffic jams tend

to move to the left. Also, the traffic jams have properties such as their size and their

duration. Using the concept of a traffic jam, we can describe the system succinctly

in these terms: “The system has two traffic jams approximately evenly spaced. The

leftmost traffic jam has a width of about 2 or 3 cars, a speed of -1 (i.e. 1 in the

leftwards direction), and a duration of about a dozen time steps...”

Another emergent phenomenon that we’d like our computer to recognize is a

glider in Conway’s Life, as we discussed in Subsection 6.4. A glider is like a traffic

jam in that the cells that are “part of” the glider constantly change.

Likewise, a “dog” at 2 different translations is like a glider or a traffic jam in

that the raw pixels that are ON when the dog is ON can change.

7.1.8 Conway’s Blurry Life

Suppose our computer is shown many example runs of Conway’s Game of Life.

We’d want the computer to come up with the concept of a “glider”, “beehive”, and
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Fig. 7.3. “Blurry Life”. On the left is Blurry Life as the computer sees it, where
each pixel can take one of 5 values. The figure on the right shows the “internals” of
blurry life. Each pixel is really 4 cells in Conway’s Life, and the value of the pixel is
the count of how many Life cells are “alive”. Both figures feature a glider on their
lower left. Note that on the right figure, the same Life cell configuration can result
in different pixel values. For example, the “box” configuration of 4 alive life cells can
be a single black pixel, 2 “50%” grey pixels, or 4 “25%” grey pixels.

other configurations that people name, but we’d also like our computer to eventually

discover the “rules” of Life, for example that an OFF or “dead” pixel with exactly

3 ON neighbors becomes ON or “alive” the next time step. This is already a tricky

problem, but we can make it even trickier by “blurring” the pixels by reducing our

resolution so that every pixel is now a 2 by 2 “summary” of 4 cells, and is one of 5

values representing the number of alive cells in it. An example of “Blurry Life” is

shown in Figure 7.3.

In Blurry Life, we’d like our computer to do the equivalent of coming up with
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molecular theory. We’d like our computer to posit the existence of cells though they

aren’t directly observable. This problem is theoretically solvable using the exponential

time algorithm given in Assumption VI. It’s our hope and belief that there are faster

algorithms for forming these theories. It’s unclear whether the system described

in this dissertation would be able to come up with such a theory or if we need

additional mechanisms, such as postulating “theoretical entities”, as discussed by

Drescher (Drescher 1991). We hope that the ontology that’s generated by Ontol will

make the search for the theory more feasible by effectively reducing the dimensionality

of the problem.

If we can solve this “Blurry Life” problem, it will pave the way for building

models for which we don’t have a simulation. For example, the work of (Berry et

al. 2003) builds social simulations. Here, we’re given data about the effects of social

dynamics, but the underlying dynamics are unknown. For this domain, we need to

go both “down” to create the model and “up” to find the macro behavior.

7.1.9 Simulation Speedups and Automatic Multi-scale Models

As mentioned in Section 6.4, a person running Conway’s Game of Life by hand

will likely develop shortcuts. If a person had the time and patience to calculate

weather simulations by hand, that person would doubtless create shortcuts for this

too. The amount of computation that goes into these simulations is so vast that no

person could do much of a simulation, but a computer could. Conceivably, using

the ideas generated in this dissertation, a computer could discover shortcuts and

“lemmas” for simulating the weather and other complex models.



182

If we’re able able to speed-up a simulation of Conway’s Life to get a fast (though

possibly lossy) model, we can apply these same techniques to a virtually unlimited

range of simulations.

We can also apply these techniques to a virtually unlimited range of modalities:

As we have an intuition for vision and sound, imagine a computer having an intu-

ition for other modalities such as infrared, weather data (mentioned in (Hawkins &

Blakeslee 2004)), or speed-sensor data. A good deal of a dolphin’s cortex is dedicated

to the processing of sonar. The sonar that’s in submarines is a mere toy compared

to what dolphins sense. Likewise, it’s conceivable that a computer could develop this

kind of intuition given a large amount of sonar data.

Since our system doesn’t know how many dimensions we have, we should be

able to apply our system to voxel data (MRI) and geographical and weather data for

which people have bad intuitions. Conceivably, a computer could have an intuition

about 3 or 4 dimensions the same way we have intuition about 2 dimensions.

When we model electrical systems, we can model on the level of individual elec-

trons using Maxwell’s equations, or we can model many electrons using Ohm’s law.

Philosophical Aside: Super Bowl from Traffic Sensors We can simulate

traffic from a global perspective. For example, if we have speed sensor data, then we

can simulate things like Friday evening rush hour, traffic flow. Hypotheticals (e.g.,

if there was a blockage at a particular place on I-95). Such a simulation is shown in

Figure 1.1.

There’s the question of how deep a model of the world we can get from this
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rather narrow stream of data. Suppose that somehow the world was relatively stable

for an indefinite period of time, even trillions of years. Is it possible to develop a

theory of the Super Bowl given nothing but trillions of years of traffic data? What if

we use the exponential-time algorithm from Assumption VI? It’s possible that there

are only a finite number of possible universes, and the one that fits the traffic data

also has the Super Bowl.

7.1.10 Theoretical Terms

We’ve seen that we can model traffic from a “global” perspective. We can also

do traffic simulations from the perspective of an individual driver. For example, when

we’re driving, we’ll note my local surroundings (including the view in the rear-view

mirror). We’ll note that one driver is “aggressive”, while another driver is talking

on her cell-phone. Based on these superficial features, we’ll be able to make some

prediction about how the local traffic will behave. We’ll also be able to decide how

to drive to avoid being locked in, get where we’re going faster, etc.. For example, if a

“slow” driver is in the left lane talking on his cellular phone, and an aggressive driver

is coming from behind, we can predict that the fast driver will pass the slow driver

on the slow driver’s right.

7.2 Cognitive and Philosophical Answers

The ideas in this dissertation might also give us some leverage and “thought

tools” to help answer some philosophical questions.
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Fig. 7.4. A tiger with 28 stripes.

7.2.1 Tiger Stripe Problem

If people are briefly shown Figure 7.4, then asked to describe it, most of us would

say it’s a tiger. Most of us would be able to answer whether the tiger was in color or

black in white, a photo or a line drawing, but not all of us would be able to describe

which way the tiger was facing (as not all of us can say which way Lincoln is facing

on the U.S. one cent coin, despite seeing thousands of pennies), and very few people

would be able to accurately answer how many stripes the tiger had. Though most

people have some gist of the number. They would say it’s more than 3, but less than

1000. Ontol shows how a computer might learn a representation that would allow it

to also remember that it saw a tiger without explicitly representing the number of

stripes it has (though having a “gist” of the number). Ontol also explains why this

is a useful feature of cognition.
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7.2.2 “Tip of The Tongue” Phenomenon

The “tip of the tongue” phenomenon is where a person “knows” a piece of in-

formation, such as the name of a hotel, but can’t seem to recall it. The person is

able to verify the name (if asked whether another name is it), but seems unable to

retrieve it from memory. One explanation for this from the perspective of Ontol is

that it might be that we have the high-level signature or hash for the concept, but

not the low-level sensors that generate the signature. Therefore, we’re able to verify

the name when we see it, but we can’t “retrieve” the name directly. We instead resort

to search to find low-level sensors that satisfy the constraint that the high-level node

must be triggered.

7.2.3 Language

The idea of signatures might also shed light on some longstanding philosophical

problems.

There’s the question of Platonic ideals (Plato 360 BC). Whether there exists such

a thing as an ideal dog, for example, and how this concept is learned. A hypothesis

from the point of Ontol is that we are given a number of instances of “dog”, then we

discover a signature for all of them, then we posit an “ideal” dog that produces that

signature most cleanly. If we have a formal theory (based on information theory)

of how these signatures are generated, then we might be able to say what the ideal

“dog” is be for a given world-history of an agent.

Language generation can also be seen as constraint satisfaction search: we have
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some concept represented in Ontol’s AND/OR ontology (we call this the “mentalese”

described by (Fodor 1975) and (Pinker 1994)) and we search for a grammatical struc-

ture that produces this signature. Just as we learn to “draw” by searching for a

construct of pixels that makes our invariant “dog” concept turn on, language is also

constraint satisfaction search.

In both drawing and language construction, we learn a set of macros to speed

up search. In drawing, we learn lines, basic shapes, and basic shading techniques. In

language generation, we learn words, turns of phrase, and formulas.



Chapter 8

CONCLUSIONS AND FUTURE WORK

Finally, to whatever degree of simplicity I may at last have reduced the

Analytical Engine, the course through which I arrived at it was the most

tangled and perplexed which probably ever occupied the human mind.

–Charles Babbage (Babbage 1864)

In this dissertation we’ve provided the blueprints for a rickety bridge from raw

sensor data to rich relational theories. Although we’ve provided a framework for

solving some longstanding problems in Artificial Intelligence, there are still many

holes to fill in before we fully solve these problems. In this chapter, we review what

we’ve built so far, we explain what’s left to do for building our bridge, and we propose

a research plan for working toward a machine with human level intelligence.

187
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8.1 Substantiation of Claims

In this section we review our claims from Section 1.4, and we show how these

are substantiated.

Our first claim –providing a conceptual story for going from raw sensor data

to rich relational theories– has been substantiated in Chapter 2, with supporting

details in Chapters 3, 4, 5, and 6. We’ve provided a story, though rickety, for how we

can get parameterized concepts from non-relational data, how we can find and use

mappings among those concepts, and how we can find structure in the behavior of

these mappings to get an intuitive theory of parameters such as scalars. Our bridge

fulfils many of our desiderata given in Subsection 1.2.1: The use of Ontol as the

backbone for our system makes for algorithmic elegance, where a single mechanism

does the bulk of the work. We’ve shown the domain independence of our approach

by demonstrating its parts on a wide range of domains. There is nothing in our

approach specific to any single modality, and none of the parts are dependent on our

own domain knowledge. None of the mechanisms require an inordinate amount of

computational resources, and we’ve demonstrated this with several mechanisms by

implementing and running them. Certain parts of our theory, namely parts of Ontol,

are based on neurological models, and are therefore biologically plausible.

The model built by our system also fulfils the desiderata we set forth in Subsec-

tion 1.2.2: compression has been the guiding metric for each link of the bridge. As

demonstrated in Section 3.6, the theory builds concepts that are useful for learning

human-labeled data. We have not rigorously demonstrated that our system makes

accurate predictions, but our model is based on that of (Hawkins & Blakeslee 2004),
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which makes such claims about their model. We argue that, in future work, we can

show that our model fulfils this desideratum. Using the same “top-down” mechanism

as (Hawkins & Blakeslee 2004), we can make predictions. For example, in Figure

3.3, the best parse is y. When y fires, it turns ON w (a is already ON). w then fires

and turns on b. So given that a, c, and d are ON, but missing the value for b, we

accurately predict that b will be ON.

We’ve fulfilled our major technical claim, which is Ontol. As demonstrated in

Chapter 3, ontol autonomously creates a useful set of concepts using a solid basis in

Bayesian probability theory. We’ve shown how Ontol finds and uses these concepts,

and we have demonstrated the utility of these concepts by showing how they can

be used to yield significantly better compression on feature-set data than by using

Lempel-Ziv alone.

We’ve also demonstrated the utility of these concepts by introducing a semi-

supervised learning algorithm, based on Ontol, that outperforms the best (that we

know of) existing semi-supervised learning algorithm for learning from a handful of

positive examples. Our algorithm also gives us some insights on how people might be

able to learn from just a handful of examples.

We’ve further shown the utility of the concepts learned by Ontol by an algorithm

that uses Ontol to learn macro-actions in Reinforcement Learning. We’ve shown that

this algorithm outperforms existing algorithm for learning macro-actions in Markov

Decision Processes.

We’d like to point out that Ontol was designed with neither Semisupervised

Learning nor Reinforcement Learning nor compression as the end-goal. The end-goal
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was to build something that would help us span the chasm between sensor data and

a rich theory of the world. This is where our goal remains, though showing progress

towards this goal is not as straightforward as it is for these side-problems.

We’ve also fulfilled our 3rd technical claim: Equation 3.1, gives us a theoretically

sound measure for evaluating the utility of ontologies, and provides theoretical backing

for future work in unsupervised learning.

We’ve fulfilled claim 4 in Section 4.2, where we detail how parameterized concepts

are represented in the same representation framework as Ontol.

In Section 4.3, we introduced and implemented behavioral signatures, which give

us an efficient way to search for behavioral similarity among parts of the ontology

built by Ontol. In Figure 4.6, we show, as a proof of concept, how these signatures

can be used to quickly gauge the behavioral similarity among different regions of the

conceptual structure. This substantiates claim 5.

Claim 6 is substantiated in Chapter 5, in which we show how mappings among

concepts are represented, discovered, and used to compress our model.

8.2 Future Work: Taking a Stab at Solving The AI Problem

If what you are doing is not important, and if you don’t think it is

going to lead to something important, why are you at Bell Labs working

on it?

–Richard Hamming (Talk at Bellcore, March 7th, 1986)



191

Though we’ve made a basic outline for how a computer can learn rich relational

theories from raw sensor data, there’s still much work to be done, not only to fill

in this bridge, but also to develop a fully intelligent system. We hypothesize that

building our bridge will give us insights into the nature of intelligence and will help

us find cognitive mechanisms that will help us solve some of the problems described

in Section 7.1.

To work toward Artificial Intelligence, we propose the following methodology:

1. Create a list of phenomena of general intelligence, for example as we’ve done

in (Pickett, Miner, & Oates 2008). Also create a list of problems that people

easily solve, but that computers have a hard time with, for example the problems

introduced in Section 7.1.

2. Create a representation framework, a set of mechanisms that operate on this

framework, and an architecture for how these mechanisms interact.

3. Tell a story about how these mechanisms address the list of phenomena and

solve the set of problems.

4. Implement these, test them on diverse domains, and see what is and isn’t ad-

dressed.

5. Modify the set of mechanisms (and goto step 2).

The general solution for building our bridge is to keeping “plugging holes” in our

system by formalizing, implementing, and testing the parts. We also need to work

out the details of how all these parts will work together. Our general plan is to plug

all the holes in Ontol, learn relational structures as described in Phases 2-4, represent
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relational structures as feature-sets as described in Phase 5, then feed these structures

back into Ontol. This makes Ontol the “backbone” for an intelligent system. Once

our bridge is finished, we’ll have more insight on how to address the problems from

Section 7.1.

In the remainder of this section, we discuss future work for the components of

our bridge. We also discuss The Speed Prior, which we suggest as an alternate metric

to Ockham’s Razor for evaluating the theories proposed by our system.

8.2.1 The Speed Prior

As mentioned in Assumption III in Chapter 1, a useful rule-of-thumb for evalu-

ating a theory developed by a computer is how well it compresses the data. Or more

precisely, it’s useful to set a description-length prior and maximize the probability of

the model given the input data. We somewhat agree with these claims. An intel-

ligent agent should be able to build a model that concisely characterizes its sensor

data, and it should be able to use this model to answer queries about the data. Such

queries might consist of making accurate predictions about given situations. The

agent should also be able to generate plans to accomplish goals (or obtain reward).

However, the time needed (in terms of steps of computation) to answer these queries

should also be taken into account. Thus, it is sometimes useful to occasionally trade

memory for time. For example, an intelligent being might cache a result that it has

deduced if it expects to use the result again.

To make this concrete, suppose our agent’s domain is Euclidean Geometry. In

this domain, a huge but finite set of theorems of can be “compressed” down to a model
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containing just 5 postulates and some rules for inference. Such a model would neither

be very useful nor would it work the same way as a person. A professional (human)

geometer would likely “cache” useful lemmas, thereby speeding up his or her future

deductions. It seems true that the same should apply to a generally intelligent being.

Another example involves sensor data. If we equip our agent with a video camera,

it’s possible that the most concise representation of the data (if the pictures are

fairly continuous) will be an encoding typical of many video compression algorithms.

That is, the representation might fully describe the initial frame, then describe each

subsequent frame as changes from its previous frame. A problem with this approach

is that it would take longer to answer queries about the end of the day than the

beginning (because the entire day would have to be “unwrapped”). This also seems

contrary to our intuitions about what an intelligent agent should be able to do.

Thus, we propose using an alternative to Ockham’s Razor called “The Speed

Prior”, first introduced by (Schmidhuber 2002), which states “The quickest model

(that predicts the data) is the best model.”. By quickest, we mean the model that

takes the fewest steps of computation to get accurate answers to queries. Of course,

there’s a trade-off between speed and accuracy, but this can be folded into a single

number by setting a parameter that would act as an “exchange rate” between steps of

computation and bits of accuracy. The Speed Prior somewhat overlaps with Ockham’s

Razor in that fast models tend to be small and tidy so that computation isn’t spent

searching through disorganized sets of information. The Speed Prior also addresses

the utility of caching: caching the answers to frequent queries (or frequent “way

points” in derivations) can yield a faster model.

The chief drawback of The Speed Prior is that it’s not as straightforward to



194

evaluate as a measure based on description-length or Equation 3.1. To start, it’s not

trivial to compute the probability of the data given a model and a fixed amount of

computation time. We could take a Monte Carlo approach, where we run the model

many times for n steps, and count the number of runs that produced the data, but this

might be expensive. Even if we could quickly compute the probability of data given

a model and certain amount of computation steps, we’d still have the question of the

“exchange rate” between time and accuracy. For example, it’s not straightforward

whether a model that generates the data with 99% probability using a million steps of

computation would be preferable to a model that uses only 1,000 computation steps

but gives the data with only 10% probability.

8.2.2 Future work for Ontol

In this dissertation, we’ve described how Ontol builds and uses an ontology. Our

future goal is for Ontol to serve as the backbone for a full cognitive architecture. If,

as we argue in Section 6.3, we can represent relational structures as feature-sets, then

we can feed these feature-sets into Ontol. So, our plan is to provide Ontol with a

strong search and ontology builder, then let Ontol do constraint-satisfaction on these

relational structures. We hypothesize that this will be sufficient to do many cognitive

tasks such as planning and reasoning. To do this, we must complete the future work

discussed below.

Incremental Learning The methods currently described are all batch algo-

rithms. But a lifelong learner will be continually receiving new information, so we’d

like our algorithms to run in incremental mode. Following the assimilation/accommodation
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model of Piaget in (Piaget 1952) and (Piaget 1954), we suggest an incremental ap-

proach where we parse/explain (assimilate) each new sensory item as it comes in.

After some amount of time, we attempt to formulate new concepts for (or accommo-

date) unexplained data.

Combined Chunking and Merging In Subsection 3.5.2, we showed how

to find candidate equivalence classes, but we don’t demonstrate how Chunking and

Merging work together to form structures to represent invariant concepts such as

that in Figure 2.8. That is, once we have candidate equivalence classes, the question

then becomes how to use them to compress the data. To do this, we replace every

instance of a feature by the equivalence classes that contain it, and see if this new

representation allows for further chunking. Figure 8.1 shows the Zoo Ontology from

Figure 3.7, except that this ontology has been chunked, then merged, then chunked

again. This structure is too complicated for us to easily evaluate based on its form

alone. Conceivably, we can evaluate structures like this by using them to do semi-

supervised learning, using the algorithm in Table 3.5, but this is the subject of future

work.

A preliminary algorithm for combining Chunking and Merging is shown in Table

8.1. The basic idea is that we first chunk the ontology using The Cruncher, then create

context vectors and crunch these to get candidate ORs as described in Subsection

3.5.2. Using the first n ORs generated, we replace each feature with its equivance

class. For example, if we find the equivance class <noun> as dog or cat or orangutan,

then we’ll replace each instance of dog etc. with <noun>. This allows us to find further

chunks, so we run The Cruncher again on this “replaced” ontology. The equivance

classes allow us to find chunks where we couldn’t before.
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Fig. 8.1. The Chunked and Merged Zoo Ontology. Black nodes are raw
features, dark grey nodes are ORs and light grey nodes are ANDs.
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Table 8.1. Algorithm for Combined Chunking and Merging

// Returns a new ontology that is both chunked and merged combinedchunkingmerging(S)
// Keep crunching the ontology, equivalence classes allow us to chunk where we couldn’t before
while E (S) is decreasing

// Crunch the ontology
let S = Cruncher(S)
// Find equivalence classes
let Q = Merger (S)
// Replace each reference of a node i with its corresponding equivalence class j
foreach node i in S

foreach e in Q
if i ∈ e then replace i with the name of e

return S

Preliminary results for this approach are shown in Table 8.2. We show the

combined Chunking and Merging algorithm for the artificial grammar in Table 3.4,

the UCI Zoo dataset, and the UCI mushroom dataset. In each case, we show the

ontology’s energy E (Ω) before crunching, after crunching, then after 1 iteration of

merging and crunching again. In each case, merging allows us to find chunks where

we couldn’t before. We also show the top 3 equivalence classes found for each dataset.

A full investigation of these ideas is the subject of future work.

Splitting Both Chunking and Merging are “lumping” algorithms. That is,

they take existing concepts and put them into groups. Chunking does this using in-

tensions (grouping by the properties of concepts), and Merging does this by extensions

(grouping by explicitly listing the instances of concepts).

It seems clear that people sometimes form categories by finding similarities

among a group of concepts, but it also seems likely that people split existing con-

cepts to form new concepts. For example, a child might initially lump both cows
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Table 8.2. Preliminary Results from Combined Chunking and Merging.
We show the energy function E for various datasets with crunching alone, and with
combined chunking and merging. In each case, merging allows us to further reduce
our energy score beyond what we could do through crunching alone. We also show
the first 3 discovered equivalence classes for each dataset.

Dataset Before Cruncher Chunking & Merging
mushroom 44,102 11,569 11,447
Artificial Grammar 21,996 13,340 12,200
zoo 13,434 2,473 2,447

Dataset Top 3 Eq. Classes

mushroom

{CLUSTERED, PENDANT}
{FLAT, NO}
{BROWN, BULBOUS}

Artificial Grammar
{2A, 2B, 2C, 2D}
{1A, 1B, 1C, 1D, 1E, 1F}
{3B, 3D}

zoo

{predator, toothed}
{breathes, haslegs}
{aquatic, fins}
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and horses into a single category (which we’ll refer to as “cow/horse”s), but later

split these into horses and cattle. This type of concept formation, “Splitting”, is the

subject of future work.

Essentially, Splitting means increasing the resolution of our model for areas where

a relatively small increase in resolution yields a large increase in predictive power.

For example, from a far distance, a cow and a horse look similar. But its easy to

tell a horse from a cow by looking at the bulkiness of the animal’s body or the

length of the animal’s head (or looking for horns or udders). With this added bit of

knowledge, we have information about the likelihood that the animal is a fast runner,

whether it’s involved in meat or dairy production, whether it’s ridable, and various

pieces of information about the animal’s behavior. In the case of cows and horses,

it usually pays to invest a small amount of extra resolution in exchange for all the

added information from making the split. To address Splitting, we need to address

low-resolution in Ontol.

Wide Signatures and Low Resolution In Figure 2.8, we show how we

might represent the “dog” concept with invariance to translation and rotation. The

dog shape on the right of this figure is an AND, which can be thought of as a bag

of features such that if all these features are ON, then “dog” is also ON. However,

given that the right-side dog is ON, we don’t know which raw-sensors are ON. That

is, there are many configurations of low-level sensors that might turn the right-side

dog ON. So the bag of features is essential a hash or signature for the dog concept.

We define the “signature width” to be the number of items in the bag of features (in

this case, we have 4 items shown).
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In general, if a concept has a wider signature, then fewer low-level configurations

turn the concept ON. Using this, we can control the resolution for a concept by

widening or narrowing the signature (i.e., adding or removing items from the bag of

features). For example, we can describe a “horse” by making its bag of feature equal

to that of a “cow/horse” plus the features of “a slight build” and “a long muzzle”.

So we can refine concepts by widening their signatures. (Conversely, we can relax or

“broaden” a concept by decreasing the number of nodes in its signature.)

So far, we’ve discussed a mechanism for how to refine concepts, but the question

remains of when to refine or “split” concepts. We suspect that The Speed Bias might

be necessary to answer this question. That is, we might have to take computation time

(during parsing) into account. We suggest that refinement is done when the predictive

power gained by the split outweighs the extra computation needed to determine the

values for the extra features in the signature.

Constraint Satisfaction Search The idea of signatures opens up for explo-

ration the area of constraint satisfaction search. Suppose we know that the “dog”

concept is ON in Figure 2.8. As we mentioned earlier, there are many possible in-

stantiations of this concept in our low-level sensor nodes.

A problem we might want to look at is finding a configuration that is likely to

turn the right-side dog ON. We might also be interested in the most likely configu-

ration given that “dog” is ON. We can also further constrain the configurations by

adding more concepts that need to be satisfied. For example, if we have another

concept elsewhere in our ontology that corresponds to “large thing”, and another

that corresponds to “single item”, we can effectively search for a single large dog by
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searching for configurations that turn all 3 of these concepts ON. This way, we can get

our computer to “imagine” —mentally create new instantiations of— concepts like a

large spotted dog. If our constraints are few, going all the way down and specifying

the values of raw sensors might not be fruitful, because these are going to be wildly

variable. Further up the ontology won’t be as variable though, and we should get to

know some properties of “dog”. For example, we might learn that pixel1827 is ON

half the time. (Which doesn’t tell us much.) But there should also be more invariant

concepts such as that dogs and cats are rarely seen together.

So, we suggest it would be useful to have an algorithm that takes in the values

for a set of “constraint” nodes (in this case that the right-side dog node is ON) and a

set of “input” nodes for which we want to know that values (which don’t necessarily

have to be raw sensor nodes) and returns a configuration of the input nodes that is

likely to turn ON the constraint nodes. This search can be non-trivial. Using similar

arguments as we used in Subsection 3.4.1, we can express 3-SAT problems in this

formalism, so this is an NP-complete problem, but there might be an efficient search

that works well for non-pathological cases.

If we have this search, not only can we get our computer to draw dogs, but we

argue that we can also do planning. To do this, we need to express the planning

problem as a feature-set constraint-satisfaction problem, then use this search, and

“translate” the solution back into the planning domain. In future work, we plan to

do this by using the MacGlashan Transform.

It might be interesting for this search algorithm to learn macros like a person

might. For example, when a person learns to draw, he or she learns some shading

and foreshortening tricks that are useful for many drawing tasks. To give another
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example, when a baby learns to speak, he or she learns basic phonemes, and then

uses these phonemes as macros to build the words and phrases that he or she hears.

Finally, we would like to unify the constraint-satisfaction search algorithm with

the parsing/truth-derivation algorithm, since both are basically inference searches.

8.2.3 Future work for Phase 2

There’s still much work to be done for Phase 2. For example, we need to address

the case where our “retina”, instead of being a proper grid, is a random triangulation.

In this case, there will be no direct isomorphism from one retinal region to another.

Investigation is needed as to whether or not there will be isomorphic behavior further

up the respective hierarchies of 2 retinal regions in this case, or whether additional

mechanisms will be needed. It seems that at low-resolution, different retinal areas

will behave similarly. If this is the case, then we should get both scale and rotational

invariance using the methods described in Chapter 4.

Also, as we mentioned in Section 4.4, it might be interesting to investigate

whether we can work directly in behavioral signature space for characterizing prop-

erties of cortical regions. This space is in feature-set format, the format Ontol works

with, so conceivably, we can use Ontol to find patterns in the behaviors of different

cortical regions.

We also need to address how our cortical regions are segmented to begin with.

Ideally, we’d have a single algorithm that does both the segmentation and finds the

behaviorally isomorphic cortical regions. That is, this should actually be a simulta-

neous search: finding the segments and finding behavioral overlap. Perhaps we can
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find a small behavioral overlap between 2 areas, then we “push out” both areas to

see how far we can extend the analogy.

Also, if we can then represent relational, parameterized data in terms of feature-

sets, we can use Ontol to build a hierarchy of relations, and use these relations to

characterize and make predictions. It might be interesting to create a number of

cortical regions (either by Ontol or by hand), generate the behavioral signatures,

then feed these signatures into another instantiation of Ontol to create an ontology

of behaviors.

All these areas are the subject of future work.

8.2.4 Future work for Phase 3

As with all our parts of the bridge, we need to investigate how to smoothly con-

nect Phase 3 to the part before it (Phase 2). It would also be worth investigating the

process of finding “primitive” mappings and minimal mapping sets. We also propose

a future application that uses Phase 3 for speaker classification and identification by

voice. We discuss these ideas further below.

Finding Primitive Mappings and Minimal Mapping Set Given a set of

mappings, it might be useful to find a set of “primitive” mappings out of which the

rest of the mappings can be composed. For example, we might have one mapping M

that rotates a shape 30 degrees, then translates the shape right by 15 pixels, another

that rotates 45 degrees and translates 10 pixels to the left, and a large number of

other mappings that likewise both translate and rotate a shape. In this case, we can
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break this large number of mappings down to a set of 5 primitive mappings such as

{Rotate5, TranslateRight5, TranslateLeft5, TranslateUp5, TranslateDown5}. Then,

our mapping M from above can be expressed as

M (x) = TranslateRight5(TranslateRight5(TranslateRight5(

TranslateRight5(TranslateRight5(Rotate5(Rotate5(

Rotate5(Rotate5(Rotate5(Rotate5(x)))))))))))

This is cumbersome because we have so many repeats (this expression of M

requires 11 transformations). If our goal is compression, we might want to add to

our primitives to make a “minimal” set, where the size of this set plus the size of our

descriptions using this set is minimized. Such a set might be

{ Rotate5, Rotate20, Rotate45,

TranslateRight5, TranslateRight20, TranslateRight50,

TranslateLeft5, TranslateLeft20, TranslateLeft50,

TranslateUp5, TranslateUp20, TranslateUp50,

TranslateDown5, TranslateDown20, TranslateDown50 }
Then, mapping M can be expressed using only 5 mappings:

M (x) = TranslateRight5(TranslateRight20(Rotate5(Rotate5(Rotate20(x)))))

The “minimal” set also might allow for quicker computation. It would take 2.2

times as long to compute the result of the “primitive” expression for M compared to

the “minimal” expression for M because the former has 2.2 times as many mappings

as the latter.

Of course, we’d like for our algorithm to automatically find both the primitive and

minimal set of mappings. One approach would be the following: since the mappings

are represented as sets, we can treat the mappings as feature-sets, then use Ontol to

chunk these and split them into their constituent parts.
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Future Application: Using Mappings for Speaker Classification and

Identification A future application of these mappings is to do speaker classification

and identification from spoken utterances. In our day-to-day life, we recognize familiar

people by their voices. We suggest that if we treat the mappings created by Phase

3 as feature-sets, then we can get a computer to do this. For example, if we have

a hypothetical person Doug, we might create Doug’s voice by taking the “standard”

American English voice and apply mappings such as “deep” (which lowers the pitch

of the voice), “Male”, “gravelly”, “southern accent”, and many others. These are

all mappings. If we treat these mappings as features of the voice, then we can use

Ontol to create an ontology of voices. We suspect that we can use this ontology to do

speaker recognition. Note that, since there’s nothing in our system specific to sounds,

we should be able to use the same methods for other applications, such as recognizing

people by their handwriting.

8.2.5 Future work for Phases 4 and 5

Since Phases 4 and 5 are almost entirely conceptual at the moment, the clear

next step is to actually implement and test the ideas for these phases. For example,

we should implement a version of The MacGlashan Transform using graphlet kernels.

Once this is done, we can experiment with metacognition by representing cognitive

actions as feature-sets and then feeding these feature-sets back into Ontol.

8.3 Concluding Remarks

Ignore the naysayers; go for it!
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–Nils J. Nilsson (Nilsson 1995)

We’ve provided a framework for learning rich relational theories from raw sensor

data, we’ve explained how we can get a “gisty” theory of integers and other world

phenomena, and we’ve provided the starting point and a research plan for approaching

The AI Problem. There are still many holes to fill in, and the most important place

to do research is where those holes are. Let’s go for it!
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