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Abstract. We present The Cruncher, a simple representation frame-
work and algorithm based on minimum description length for automat-
ically forming an ontology of concepts from attribute-value data sets.
Although unsupervised, when The Cruncher is applied to an animal
data set, it produces a nearly zoologically accurate categorization. We
demonstrate The Cruncher’s utility for finding useful macro-actions in
Reinforcement Learning, and for learning models from uninterpreted sen-
sor data. We discuss advantages The Cruncher has over concept lattices
and hierarchical clustering.

1 Introduction

Concept formation is a form of abstraction that allows for knowledge transfer,
generalization, and compact representation. Concepts are useful for the creation
of a generally intelligent autonomous agent. If an autonomous agent is experi-
encing a changing world, then nearly every experience it has will be unique in
that it will have at least slight differences from other experiences. Concepts al-
low an agent to generalize experiences and other data. In some applications, the
concepts that an agent uses are explicitly provided by a human programmer. A
problem with this is that the agent encounters problems when it faces situations
that the programmer had not anticipated. For this reason, it would be useful
for the agent to automatically form concepts in an unsupervised setting. The
agent should be able to depend as little as possible on representations tailored
by humans, and therefore it should develop its own representations from raw
uninterpreted data.

One purpose of concept formation (and abstraction in general) is to concisely
characterize a set of data (Wolff[9]). With this view, one can use minimum
description length (MDL) as a guiding principle for concept formation. We have
developed an algorithm, called The Cruncher, which uses this principle to form
an ontology of concepts from a collection of attribute sets. The Cruncher is
general in the sense that no further knowledge of the attribute sets needs to be
provided.

In the past, several other methods have been proposed for concept formation.
Perhaps the most common form of unsupervised concept formation is clustering.
For an overview of some of these algorithms, see Fasulo[4]. A drawback to much
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of this work is that each item belongs in only one cluster. The Cruncher uses
multiple inheritance, which allows it to overcome obstacles faced by strictly
hierarchical classification systems such as hierarchical clustering and decision
trees. For example, in Figure 1, The Cruncher describes the Penguin (which has
attributes in common with Birds and Fish) as both a “bird” and an “aquatic”
creature. Hierarchical clustering would force the Penguin to be in only one of
these classes.

There has also been work on Ontology Formation (for example, see Gruber|6]),
but much of this work is aimed at knowledge engineering, where a human’s help is
required to assist the ontology formation. The Cruncher is completely unsupervised
in contrast. The Cruncher also allows for exceptions, which further sets it apart
from most of the work in this community. The Cruncher’s exceptions allows for
better compression, and, for the UCI Zoo Database, allows for classifications that
correspond to the human-developed classification. For example, the Platypus is
described as an egg laying mammal, even though mammals are defined as not
laying eggs.

The field of Formal Concept Analysis provides methods for producing Con-
cept Lattices, which form an ontology with multiple inheritance. The main as-
pects that set The Cruncher apart from this work are: first, due to the rigidity
of Formal Concept Analysis, exceptions are not allowed as they are for The
Cruncher, and second, MDL is not a driving factor in producing the concept
lattices. As we demonstrate in Section 3, The Cruncher provides better compres-
sion than standard Concept Lattice layout algorithms, such as that described in
Cole[3]. For an overview of the field of Formal Concept Analysis see Ganter and
Wille[5].

The idea for The Cruncher grew out of “PolicyBlocks”, an algorithm for
finding useful macro-actions in Reinforcement Learning (Pickett and Barto[7]).
The Cruncher extends PolicyBlocks by framing it in terms of ontology formation
and MDL, and by adding exceptions and the ability to create multiple levels of
concepts.

This paper is organized as follows: Section 2 provides a description of our
representation framework and The Cruncher algorithm. Section 3 reports the
results of applying The Cruncher to a variety of domains including the UCI
Zoo Database and macro-action formation in Reinforcement Learning. Section 4
discusses strengths and weaknesses of The Cruncher in light of these experiments,
and suggests future research directions to address The Cruncher’s weaknesses.

2 The Cruncher

Given a collection of sets of attribute-value pairs, where each attribute’s value
is from a finite alphabet, The Cruncher produces a concept ontology which uses
inheritance to compress the collection of attribute sets. One can “flatten” this
ontology by computing the inheritance of every node in it, and this flattened
ontology will contain the original collection of attribute sets. The Cruncher uses
a greedy approach for reducing the description length of the ontology (which is
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initially just the collection of attribute sets). The description length is defined
as the number of links in the ontology, be they “is-a” or “has-a” links, where an
“is-a” link designates that one node inherits from another, and a “has-a” link
specifies an attribute that a node has and that attribute’s value. (Whether the
number of nodes was also included in the description length did not significantly
affect our results partly because this number usually closely corresponds with
the number of links.) The Cruncher generates candidate concepts by finding the
“intersections” of subsets of the current items in the ontology. These candidates
are then evaluated by determining the reduction in description length if each
were to be adopted as concepts in the ontology. If no candidate reduces the
description length, then The Cruncher halts. If a candidate is selected, then it is
added to the ontology, and all other concepts in the ontology inherit from it if it
reduces their description length. If there is a contradiction in the value assigned
to an attribute by the nodes from which a concept inherits, that term is simply
discarded. Furthermore, if a concept has an attribute, but the node from which
it inherits has a different value for that attribute, then the concept states what
its value is for that attribute. Thus, exceptions are allowed.

The runtime of this algorithm depends on whether one generates all possi-
ble candidate concepts, which, theoretically, can be exponential in the number
of sets of original attribute pairs. In practice, one can successfully generate on-
tologies by randomly generating only a subset of these candidates, thus yielding
a polynomial time algorithm. There is also an incremental version of this algo-
rithm which works works by inserting one new concept at a time, and generating
candidates by intersecting that node with each of the other concepts in the on-
tology. The top candidate is selected (or none if no candidate yields a decrease
in description length), then this candidate is inserted into the ontology following
the same procedure.

3 Experiments

To test the general applicability of The Cruncher, we chose a diverse set of domains
to which we applied our algorithm. The UCI Zoo Database is useful for gaining
insight about The Cruncher’s ontologies. PolicyBlocks provides a non-bitvector
domain for which there is a definite performance measure (cumulative reward).
The Circles world demonstrates The Cruncher’s utility for a basic sensor time-
series domain. The Concept Lattice Comparison provides an example of a typical
concept lattice ontology and The Cruncher’s ontology on the same data set.

3.1 The UCI Zoo Database

We applied The Cruncher to the Zoo Database from the UCI Machine Learning
Repository[1]. This data has 101 animals which are represented as bit vectors
of length 16 (we changed the integer attribute “number of legs” to the binary
“has legs” for consistency). Additionally, this dataset has a classification for each
animal, which we discarded. The ontology that was created by The Cruncher
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Fig. 1. The Automatically Created Zoo Ontology. Arrows represent inheritance,
and the attributes and their values are listed in the nodes. Grey nodes are the original
concepts in the database, and black nodes were created by The Cruncher. Mammals
are grouped in the lower right, fish in the lower left, and the other three major clusters,
from left to right, are, for the most part, reptiles/amphibians, birds, and invertebrates.
Note, the multiply inheriting Penguin in the upper left. The class of birds is divided
just for the Penguin, and the Penguin shares traits with the aquatic animals (“not
airborne”, “aquatic”, “predator”)

is shown in Figure 1. An interesting outcome is that the animals are arranged
according to their classification even though this classification data was never
provided. For example, there is almost a one to one correspondence to the ani-
mals that inherit from the black node in the lower right and the class Mammal.
(The Tuatara and the Tortoise are the only exceptions.) Birds, Fish, and In-
vertebrates are likewise grouped together. The utility of allowing exceptions is
demonstrated by the Platypus, which is classified as an egg-laying mammal (even
though mammals are asserted as not laying eggs). The utility of having multiple
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inheritance is demonstrated by the case of the Penguin, which shares traits with
both aquatic life and birds.

3.2 PolicyBlocks: Creating Useful Macro-actions

In Pickett and Barto[7], it was demonstrated that for policies in a Markov
Decision Process, certain concepts, which are effectively those created in the
first level of abstraction in The Cruncher, can be used as useful macro-actions.
These macro-actions outperform hand-chosen macro-actions such as getting to
the “doorways” of the rooms in a grid-world. We started with a 20 by 20 grid-
world structure (see Figure 2), and produced full policies leading to each of 20
randomly selected goal states. These policies are represented as a collection of
400 attribute-values, where the attributes are each of the 400 states, and the
values are one of up, down, left, and right.

Fig. 2. A macro-action ontology. On the left is a macro-action generated by apply-
ing The Cruncher to a set of policies on a grid-world. The structure of the ontology is
shown on the right. Each grey node corresponds to a full policy over the grid-world.
Each black node is a sub-policy, or macro-action, that was produced by The Cruncher.
For example, the macro-action encoded by the bottommost node in this ontology is
that shown in the grid-world on the left. The arrows are “is-a” links, so every full policy
can be thought of as the composition of all the sub-policies from which it inherits (in
addition to the grey node’s own modifications). Thus, each black node can be thought
of as a “building block” for a full policy. (This is the origin of the term “PolicyBlocks”)

3.3 The Circles World

We applied The Cruncher to the Circles domain. This is a simple 2 Dimensional
physical simulation where the “particles” are circles that are “gravitationally”
attracted to each other. The circles are on a torus-shaped world (i.e., the top
and bottom “wrap around” to each other as do the left and right sides). There
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Fig. 3. The Circles World On the left is a snapshot of The Circles World, which
is represented as a set of 2,500 (50 by 50) features corresponding to each of the 50
by 50 pixels. The 12 circles shown are in the process of orbiting each other in their
gravitational dance. One the right is the circles top-level concept ontology. The grey
areas are unspecified, and the lower 3 squares show only their hasA sets (as opposed to
being flattened). The edges are “is-a” links. Thus, one can inherit from these “Circles

concepts” to help compose a full Circles snapshot, such as the one shown on the left,
just as one can use the “Policy blocks” in Figure 2 to compose full policies

B

are no collisions, but when the circles are sufficiently close to each other, their
attraction is nullified until they are farther apart.

We provided The Cruncher with 50 “snapshots” from this simulation, where
a snapshot is a set of 2,500 bits representing a 50 by 50 bitmap (see Figure 3).
Note that the 2,500 bits are a raw data set. That is, no organization was provided
to The Cruncher about whether, for example, Bit-1837 had anything more to do
with Bit-1836 than it did with Bit-2354. This is fundamentally the same type
of problem that Pierce and Kuipers[8] addressed using a different method based
on statistical analysis. At the level of these bits, the concept of a circle is a fairly
abstract entity. Here, The Cruncher has taken some steps toward describing the
notion of a circle in that it has found that bits that form a circular pattern (when
arranged in a bitmap) have something to do with each other. Figure 3 shows
the top level concepts in the ontology created by The Cruncher for this domain.
Noticing these correlations is the beginning of a theory of 2 Dimensional space,
that is a similar result (though by different means) to the first step produced by
Pierce and Kuipers|[8].

3.4 Concept Lattice Comparison

The Cruncher yields better compression results than standard concept lattice lay-
out algorithms. For example, the ontology produced by The Cruncher (Figure 4)
for a Biological Organism domain had both fewer edges and fewer nodes (28 and
11, respectively) than that produced by Cole’s method[3] (37 edges and 18 nodes).
Additionally, formal concept lattices do not allow for exceptions, whose useful-
ness was shown in the case of the Platypus in the Zoo Database (see Figure 1).
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Fig. 4. Concept Lattices. A Biological Organism Domain adapted from Cole[3]. The
ontology on the left was produced by a concept layout algorithm from that same paper.
It has 37 edges (including the 9 “attribute” edges) and 18 nodes, which is more edges
and more nodes than the ontology produced by The Cruncher shown on the right,
which has 28 edges (including 17 “attribute” edges) and 11 nodes

4 Discussion

The strength of The Cruncher lies in its simplicity and its generality. The
Cruncher was directly applied (i.e., with minimal massaging of the input repre-
sentation) to diverse domains with positive results. Therefore, we believe that
the basic ideas underlying The Cruncher may play a pivotal role in abstraction
algorithms in general. The principle of MDL may be a part of a more general
principle of Balance of Computational Resources. Occasionally, it is useful to
cache the result of an inference, thereby trading memory for time. For example,
one needs only Euclid’s 5 postulates and an inference mechanism to produce all
of Euclidean geometry. In practice, it’s often useful to “cache” theorems rather
than rederiving them even though this results in a larger description length. This
resource balance may be viewed as finding Pareto optima in model space where
models are evaluated by their time and memory requirements, and their accu-
racy. Alternatively, a model may be given a score based on some “exchange rate”
among these resources. There have also been arguments that MDL alone might
not be sufficient to produce useful concepts (Cohen et al.[2]) since compression
tends to find frequent, but not necessarily meaningful results. However, sheer
frequency is not the only factor in The Cruncher, and it would be interesting to
apply our algorithm to the data set used by Cohen et al.[2] for which standard
compression algorithms fail to produce meaningful results.

There are several extensions that can be made to The Cruncher. Among the
most immediate of these is exploiting the heterarchy of the created ontology to
speed up further crunching. This might be especially useful in the incremental
version. There are some forms of concept formation that people do, but The
Cruncher does not handle. For example, a person can watch a bird’s eye view of
a simulation of highway traffic, and quickly point out traffic jams. The person
could tell you where the traffic jams are, how big they are, and how fast they are
moving (traffic jams tend to move in the direction opposite that of the cars in
them). A traffic jam is different from a cluster of cars because, like particles in



The Cruncher: Automatic Concept Formation 289

a wave, individual cars enter and exit a traffic jam, but the traffic jam remains.
The circles in The Circles domain are like traffic jams in the sense that certain
pixels turn on and off, but a pattern (i.e., the circle) remains consistent. The
Cruncher also has no notion of precedence or dynamics. For example, the order
of the snapshots of the circles domain was discarded. If one adds the ability
to represent order, relationships, and dynamics as attribute-values, then The
Cruncher can be used to organize and form concepts from stories, processes, and
properties.
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